cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A326728 A(n, k) = n*(k - 1)*k/2 - k, square array for n >= 0 and k >= 0 read by ascending antidiagonals.

Original entry on oeis.org

0, 0, -1, 0, -1, -2, 0, -1, -1, -3, 0, -1, 0, 0, -4, 0, -1, 1, 3, 2, -5, 0, -1, 2, 6, 8, 5, -6, 0, -1, 3, 9, 14, 15, 9, -7, 0, -1, 4, 12, 20, 25, 24, 14, -8, 0, -1, 5, 15, 26, 35, 39, 35, 20, -9, 0, -1, 6, 18, 32, 45, 54, 56, 48, 27, -10
Offset: 0

Views

Author

Peter Luschny, Aug 04 2019

Keywords

Comments

A formal extension of the figurative numbers A139600 to negative n.

Examples

			[0] 0, -1, -2, -3, -4, -5, -6,  -7,  -8,  -9, -10, ... A001489
[1] 0, -1, -1,  0,  2,  5,  9,  14,  20,  27,  35, ... A080956
[2] 0, -1,  0,  3,  8, 15, 24,  35,  48,  63,  80, ... A067998
[3] 0, -1,  1,  6, 14, 25, 39,  56,  76,  99, 125, ... A095794
[4] 0, -1,  2,  9, 20, 35, 54,  77, 104, 135, 170, ... A014107
[5] 0, -1,  3, 12, 26, 45, 69,  98, 132, 171, 215, ... A326725
[6] 0, -1,  4, 15, 32, 55, 84, 119, 160, 207, 260, ... A270710
[7] 0, -1,  5, 18, 38, 65, 99, 140, 188, 243, 305, ...
		

Crossrefs

Cf. A001489 (n=0), A080956 (n=1), A067998 (n=2), A095794 (n=3), A014107 (n=4), A326725 (n=5), A270710 (n=6).
Columns include A008585, A016933, A017329.
Cf. A139600.

Programs

  • Maple
    A := (n, k) -> n*(k - 1)*k/2 - k:
    seq(seq(A(n - k, k), k=0..n), n=0..11);
  • Python
    def A326728Row(n):
        x, y = 1, 1
        yield 0
        while True:
            yield -x
            x, y = x + y - n, y - n
    for n in range(8):
        R = A326728Row(n)
    print([next(R) for _ in range(11)])

A095796 1 + (26*n+17+7*n^2)*n/2.

Original entry on oeis.org

1, 26, 98, 238, 467, 806, 1276, 1898, 2693, 3682, 4886, 6326, 8023, 9998, 12272, 14866, 17801, 21098, 24778, 28862, 33371, 38326, 43748, 49658, 56077, 63026, 70526, 78598, 87263, 96542, 106456
Offset: 0

Views

Author

Gary W. Adamson, Jun 06 2004

Keywords

Comments

Multiply the n-th power of the 4 X 4 matrix [1 0 0 0 / 1 1 0 0 / 2 3 1 0 / 6 12 7 1] by the column vector [1 1 1 1] from the right. Then a(n) is the last component of the vector that results, and A095794(n) the penultimate component.

Examples

			806 = a(5) since M65 * [1 1 1 1] = [1 6 56 806] where 56 = A095794(5).
		

Crossrefs

Cf. A095794.

Programs

  • Magma
    I:=[1, 26, 98, 238]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 24 2012
  • Mathematica
    LinearRecurrence[{4,-6, 4,-1},{1,26,98,238},40] (* Vincenzo Librandi, Jun 24 2012 *)
    Table[1+(26n+17+7n^2)n/2,{n,0,30}] (* or *) CoefficientList[Series[ (1+ 22x- 2x^3)/(-1+x)^4,{x,0,30}],x]

Formula

a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4).
G.f. ( 1+22*x-2*x^3 ) / (x-1)^4 . - R. J. Mathar, Nov 05 2011

A131414 A130302 + A130303 - A000012.

Original entry on oeis.org

1, 5, 1, 10, 3, 1, 16, 5, 3, 1, 23, 7, 5, 3, 1, 31, 9, 7, 5, 3, 1, 40, 11, 9, 7, 5, 3, 1, 50, 13, 11, 9, 7, 5, 3, 1, 61, 15, 13, 11, 9, 7, 5, 3, 1, 73, 17, 15, 13, 11, 9, 7, 5, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, Jul 08 2007

Keywords

Comments

Left column = A052905: (1, 5, 10, 16, 23, 31,...). Row sums = A095794: (1, 6, 14, 25, 39,...).

Examples

			First few rows of the triangle are:
1;
5, 1;
10, 3, 1;
16, 5, 3, 1;
23, 7, 5, 3, 1;
31, 9, 7, 5, 3, 1;
...
		

Crossrefs

Formula

A130302 + A130303 - A000012 as infinite lower triangular matrices.

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Views

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.

A131828 Square of lower triangular matrix in A131821, read by rows.

Original entry on oeis.org

1, 6, 4, 14, 5, 9, 25, 7, 7, 16, 39, 9, 9, 9, 25, 56, 11, 11, 11, 11, 36, 76, 13, 13, 13, 13, 13, 49, 99, 15, 15, 15, 15, 15, 15, 64, 125, 17, 17, 17, 17, 17, 17, 17, 81, 154, 19, 19, 19, 19, 19, 19, 19, 19, 100
Offset: 1

Views

Author

Gary W. Adamson, Jul 20 2007

Keywords

Comments

Left column = A095794: (1, 6, 14, 25, 39, 56, ...).
Row sums = A060544: (1, 10, 28, 55, 91, 190, ...).

Examples

			First few rows of the triangle:
   1;
   6,  4;
  14,  5,  9;
  25,  7,  7, 16;
  39,  9,  9,  9, 25;
  56, 11, 11, 11, 11, 36;
  76, 13, 13, 13, 13, 13, 49;
  ...
		

Crossrefs

Formula

Previous Showing 21-25 of 25 results.