cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A096852 a(n) is the length of terminal cycle of the trajectory of f(x)=phi(sigma(x)) if started at 2^n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 2, 2, 6, 2, 1, 6, 2, 1, 2, 3, 11, 11, 2, 2, 15, 15, 18, 18, 18, 18, 12, 12, 12, 1
Offset: 0

Views

Author

Labos Elemer, Jul 16 2004

Keywords

Examples

			n=18: start = 262144 and the corresponding 11-cycle is 262144, 524286, [368640, 381024, 326592, 550368, 435456, 580608, 851840, 552960, 524160, 442368, 432000], 368640, ...
		

Crossrefs

Programs

  • Mathematica
    g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := Block[{lst = NestWhileList[g, n, UnsameQ, All]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Table[ f[2^n], {n, 0, 20}]
  • PARI
    f(x)=eulerphi(sigma(x))
    a(n)=my(t=f(2^n), h=f(t), s); while(t!=h, t=f(t); h=f(f(h))); t=f(t); h=f(t); s=1; while(t!=h, s++; t=f(t); h=f(f(h))); s \\ Charles R Greathouse IV, Nov 27 2013

Formula

a(n) = A095955(2^n). - Charles R Greathouse IV, Nov 27 2013

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jul 17 2004

A373435 Iterate the function x <- phi(sigma(x)). The sequence lists the smaller member of cycles of length 2.

Original entry on oeis.org

4, 48, 72, 432, 1728, 10368, 184320, 1658880, 6220800, 10222080, 12856320000
Offset: 1

Views

Author

Jud McCranie, Jun 06 2024

Keywords

Comments

A cycle of length 2 also starts at 3852635996160. 3852635996160, 4869303828480, and 23971865863680 are also terms in the sequence. The sequence is complete through 10^13. - Jud McCranie, Sep 14 2024
166144927334400, 273145872384000, 1904394240000000,2779315686604800, 3644668394864640, 32729712349340160, 48693038284800000, 86790832128000000, 382404221337600000, 2684203735449600000, 5246585916751872000, 6169596402106368000, 13477567109529600000, 22998695842676736000, 38039819551128944640, 90555444080640000000, 102336861080974786560, 130026464870400000000, 222489728778240000000, 499064687988572160000, 2927044657152000000000, 19697331219625672704000, 23473340597403648000000, 73262977439150112768000, 1362680919097344000000000, 14128156119169341849600000, 16615689577928023080960000, 53129683677797469388800000, 6512790537509850316800000000, 125020570798295875584000000000, 201603700212193346715648000000, 1622429777898127409283072000000, 2631371767787268127693209600000, 71803515676046099742720000000000, 105852742809627160240717824000000000, 5528044915051901005564508897280000000, 15042880212263420006968149934080000000, 2013381648407800940932784726212608000000, 67868597277402193009117012867153920000000, 17285817653863442809402049534361600000000000 are also in this sequence. - Richard R. Forberg, Oct 27 2024

Examples

			phi(sigma(4)) = 6 and phi(sigma(6)) = 4, so 4 (the smallest term) is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], # == EulerPhi[DivisorSigma[1,EulerPhi[DivisorSigma[1,#]]]] && # < EulerPhi[DivisorSigma[1,#]]&] (* Stefano Spezia, Jun 07 2024 *)
  • PARI
    isok(x) = my(y = eulerphi(sigma(x))); if (y > x, x == eulerphi(sigma(y))); \\ Michel Marcus, Jun 06 2024

A373453 Iterate the function x <- phi(sigma(x)). The sequence has the smallest member of cycles of length 3.

Original entry on oeis.org

16, 1200, 15552, 67392, 272160, 69672960000
Offset: 1

Views

Author

Jud McCranie, Jun 06 2024

Keywords

Comments

69672960000 is also a term in the sequence.
a(7) <= 2704853606400. The numbers 242595672883200000, 66217181184000000000 and 185577469193591193600 are also terms. - Giorgos Kalogeropoulos, Jun 18 2024
4672651788288000 is also a term. - Jud McCranie, Jun 18 2024
The sequence is complete through 10^13. - Jud McCranie, Sep 14 2024

Examples

			16 -> 30 -> 24 -> 16, so 16 (the smallest term) is in the sequence.
		

Crossrefs

Subsequence of A376256.

Programs

  • PARI
    isok(x) = my(y = eulerphi(sigma(x))); if (y > x, my(z = eulerphi(sigma(y))); if (z > x, x == eulerphi(sigma(z)))); \\ Michel Marcus, Jun 07 2024

Extensions

a(6) from Giorgos Kalogeropoulos, Jun 18 2024

A373454 Iterate the function x <- phi(sigma(x)). The sequence has the smallest member of cycles of length 4.

Original entry on oeis.org

576, 41472, 2142720000, 3233260800
Offset: 1

Views

Author

Jud McCranie, Jun 06 2024

Keywords

Comments

130767436800000 is also a term. - Jud McCranie, Jun 18 2024
Terms are complete to 10^13. - Jud McCranie, Sep 14 2024
Terms also include 2590533833653034680320, 4911428805164059852800, 345401330417459527680000, 45369029282941832999731200, 1178793806496987670275686400000, 1241573383607207067648000000000, 3740981970485927435304960000000. - Richard R. Forberg, Oct 06 2024
Terms also include 1733855546435861719195867542454272000000. - Richard R. Forberg, Jan 04 2025

Examples

			576 -> 1512 -> 1280 -> 864 -> 576, so 576 (the smallest term) is in the sequence.
		

Crossrefs

Programs

  • PARI
    isok(x) = my(y = eulerphi(sigma(x))); if (y > x, my(z = eulerphi(sigma(y))); if (z>x, x == eulerphi(sigma(eulerphi(sigma(z)))))); \\ Michel Marcus, Jun 07 2024

A096859 Function A062401(x) = phi(sigma(x)) = f(x) is iterated. Starting with n, a(n) is the count of distinct terms arising in trajectory; a(n)=t(n)+c(n)=t+c, where t=number of transient terms, c=number of recurrent terms (in the terminal cycle).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 1, 2, 3, 3, 1, 3, 2, 2, 3, 3, 4, 2, 2, 4, 2, 2, 3, 4, 2, 4, 4, 2, 3, 4, 4, 4, 5, 4, 3, 5, 4, 4, 4, 2, 5, 3, 4, 4, 4, 4, 2, 4, 3, 4, 6, 5, 5, 4, 5, 5, 4, 4, 2, 4, 5, 3, 4, 4, 3, 5, 4, 5, 3, 4, 2, 4, 4, 3, 3, 5, 3, 5, 3, 4, 4, 4, 3, 4, 5, 5, 3, 4, 3, 3, 3, 5, 3, 5, 2, 6, 4, 3, 7, 5, 3, 3, 3, 5
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=255: list={255,144,360,288,[432,480],432,...}, t=transient=4, c=cycle=2, a(255)=t+c=6;
n=244: list={244,180,144,360,288,[432,480],432,...}, t=5, c=2, a(244)=7.
		

Crossrefs

Programs

  • Mathematica
    fs[x_] :=EulerPhi[DivisorSigma[1, x]] itef[x_, len_] :=NestList[fs, x, len] Table[Length[Union[itef[2^w, 20]]], {w, 1, 256}] (* len=20 at n<=256 is suitable *)
  • Scheme
    (define (A096859 n) (let loop ((visited (list n)) (i 1)) (let ((next (A062401 (car visited)))) (cond ((member next visited) i) (else (loop (cons next visited) (+ 1 i))))))) ;; Antti Karttunen, Nov 18 2017

A096865 Function A062401(x) = phi(sigma(x)) is iterated. Starting with n, a(n) is the smallest term arising in trajectory, either in transient or in terminal cycle.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 8, 9, 4, 4, 12, 4, 8, 8, 16, 4, 16, 8, 12, 16, 12, 8, 16, 16, 12, 16, 16, 8, 16, 16, 32, 16, 16, 16, 36, 16, 16, 16, 16, 12, 32, 12, 16, 16, 16, 16, 48, 36, 48, 16, 32, 16, 32, 16, 32, 32, 16, 16, 48, 16, 32, 48, 64, 16, 48, 32, 36, 32, 48, 16, 72, 36, 36, 48
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=255: list={255,144,360,288,[432,480],432,...}, a(255)=144 as a transient term;
n=254: list={254,[128],128,...}, a(254)=128, as a fixed point.
		

Crossrefs

Cf. A062401, A062402, A095955, A096859, A096860, A096861 (largest term).
Cf. also A096866.

Programs

  • Mathematica
    fs[x_] :=EulerPhi[DivisorSigma[1, x]] itef[x_, hos_] :=NestList[fs, x, hos] Table[Min[itef[w, 20]], {w, 1, 256}]
  • Scheme
    (define (A096865 n) (let loop ((visited (list n)) (m n)) (let ((next (A062401 (car visited)))) (cond ((member next visited) m) (else (loop (cons next visited) (min m next))))))) ;; Antti Karttunen, Nov 18 2017

A096861 Function A062401(x) = phi(sigma(x)) = f(x) is iterated. Starting with n, a(n) is the largest term arising in trajectory.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 8, 12, 10, 11, 12, 13, 14, 15, 30, 17, 30, 19, 20, 30, 22, 23, 30, 30, 26, 30, 30, 29, 30, 31, 96, 33, 34, 35, 96, 37, 38, 39, 40, 41, 96, 43, 44, 45, 46, 47, 60, 96, 60, 51, 96, 53, 96, 55, 96, 96, 58, 59, 60, 61, 96, 63, 126, 65, 66, 96, 96, 96, 70, 71, 96
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=255: list={255,144,360,288,[432,480],432,...}, a(255)=480, a recurrent term;
n=247: list={247,96,72,96,...}, a(247)=247, a transient term, here the initial value.
		

Crossrefs

Programs

  • Mathematica
    gf[x_] :=DivisorSigma[1, EulerPhi[x]] itef[x_, len_] :=NestList[fs, x, len] Table[Max[itef[w, 20]], {w, 1, 256}]
  • Scheme
    (define (A096861 n) (let loop ((visited (list n)) (m n)) (let ((next (A062401 (car visited)))) (cond ((member next visited) m) (else (loop (cons next visited) (max m next))))))) ;; Antti Karttunen, Nov 18 2017

A096993 Function A062402(x) = sigma(phi(x)) is iterated with initial value=n. a(n) is the length of cycle into which the trajectory merges.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 3, 2, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 2, 3, 3, 3, 3, 1, 2, 1, 3, 1, 3, 3, 2, 1, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 2, 1, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Comments

No 5's present among the first 16384 terms, but they should exist as A095955 has them too. - Antti Karttunen, Dec 04 2017

Crossrefs

Programs

  • Scheme
    (define (A096993 n) (if (= 1 n) n (let loop ((visited (list n)) (i 1)) (let ((next (A062402 (car visited)))) (cond ((member next visited) => (lambda (prepath) (+ 1 (- i (length prepath))))) (else (loop (cons next visited) (+ 1 i)))))))) ;; Antti Karttunen, Dec 04 2017

A096849 If f(x) = phi(sigma(x)) is iterated starting from these numbers, then the start-value never returns. These are the transient terms of this iteration. Never occur in terminal cycles.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Labos Elemer, Jul 16 2004

Keywords

Examples

			All odd and certain even integers belong here.
		

Crossrefs

Programs

  • Mathematica
    Flatten@ Table[Function[s, If[Length@ # > 0, First@ #, #] &@ Keys@ KeySelect[s, Length@ Lookup[s, #] == 1 &]]@ PositionIndex@ NestList[EulerPhi@ DivisorSigma[1, #] &, n, 10^2], {n, 71}] (* Michael De Vlieger, Jul 24 2017 *)

A096862 Function A062402(x)=sigma(phi(x)) is iterated. Starting with n, a(n) is the count of distinct terms arising during this trajectory; a(n)=t(n)+c(n)=t+c, where t is the number of transient terms, c is the number of recurrent terms [in the terminal cycle].

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 3, 3, 3, 4, 2, 2, 3, 1, 2, 4, 3, 5, 2, 2, 4, 3, 2, 3, 2, 5, 1, 5, 2, 3, 4, 3, 4, 4, 2, 4, 5, 4, 4, 5, 2, 6, 3, 4, 3, 4, 4, 6, 3, 5, 4, 7, 5, 5, 4, 4, 5, 5, 3, 3, 4, 4, 5, 3, 3, 4, 5, 5, 4, 4, 3, 3, 4, 5, 4, 3, 4, 3, 5, 6, 5, 5, 4, 5, 6, 6, 5, 4, 4, 3, 5, 3, 4, 3, 5, 3, 6, 3, 5, 8, 5, 4, 3, 3
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=256: list={256,255,255}, transient=t=1, cycle=c=1, a(256)=t+c=2.
		

Crossrefs

Programs

  • Mathematica
    gf[x_] :=DivisorSigma[1, EulerPhi[x]] gite[x_, hos_] :=NestList[gf, x, hos] Table[Length[Union[gite[w, 1000]]], {w, 1, 256}]
Previous Showing 11-20 of 31 results. Next