cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 93 results. Next

A306286 a(n) is the product of the positions of the ones in the binary expansion of n (the most significant bit having position 1).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 6, 1, 4, 3, 12, 2, 8, 6, 24, 1, 5, 4, 20, 3, 15, 12, 60, 2, 10, 8, 40, 6, 30, 24, 120, 1, 6, 5, 30, 4, 24, 20, 120, 3, 18, 15, 90, 12, 72, 60, 360, 2, 12, 10, 60, 8, 48, 40, 240, 6, 36, 30, 180, 24, 144, 120, 720, 1, 7, 6, 42, 5, 35, 30
Offset: 0

Views

Author

Rémy Sigrist, May 04 2019

Keywords

Comments

The variant where the least significant bit has position 1 corresponds to A096111 (with an appropriate offset).

Examples

			The first terms, alongside the positions of ones and the binary representation of n, are:
  n   a(n)  Pos. ones  bin(n)
  --  ----  ---------  ------
   0     1  {}              0
   1     1  {1}             1
   2     1  {1}            10
   3     2  {1,2}          11
   4     1  {1}           100
   5     3  {1,3}         101
   6     2  {1,2}         110
   7     6  {1,2,3}       111
   8     1  {1}          1000
   9     4  {1,4}        1001
  10     3  {1,3}        1010
  11    12  {1,3,4}      1011
  12     2  {1,2}        1100
  13     8  {1,2,4}      1101
  14     6  {1,2,3}      1110
  15    24  {1,2,3,4}    1111
  16     1  {1}         10000
		

Crossrefs

Cf. A096111, A306549, A307218 (fixed points).

Programs

  • Mathematica
    A306286[n_] := Times @@ Flatten[Position[IntegerDigits[n, 2], 1]];
    Array[A306286, 100, 0] (* Paolo Xausa, Jun 01 2024 *)
  • PARI
    a(n) = my (b=binary(n)); prod(k=1, #b, if (b[k],k,1))
    
  • PARI
    a(n) = vecprod(Vec(select(x->(x==1), binary(n), 1))); \\ Michel Marcus, Jun 01 2024
    
  • Python
    from math import prod
    def a(n): return prod(i for i, bi in enumerate(bin(n)[2:], 1) if bi == "1")
    print([a(n) for n in range(71)]) # Michael S. Branicky, Jun 01 2024

Formula

a(2*n) = a(n).
a(2^k) = 1 for any k >= 0.
a(2^k-1) = k! for any k >= 0.
a(2^k+1) = k+1 for any k >= 0.

A371450 MM-number of the set-system with BII-number n.

Original entry on oeis.org

1, 3, 5, 15, 13, 39, 65, 195, 11, 33, 55, 165, 143, 429, 715, 2145, 29, 87, 145, 435, 377, 1131, 1885, 5655, 319, 957, 1595, 4785, 4147, 12441, 20735, 62205, 47, 141, 235, 705, 611, 1833, 3055, 9165, 517, 1551, 2585, 7755, 6721, 20163, 33605, 100815, 1363, 4089
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The set-system with BII-number 30 is {{2},{1,2},{3},{1,3}} with MM-number prime(3) * prime(6) * prime(5) * prime(10) = 20735.
The terms together with their prime indices and binary indices of prime indices begin:
     1 -> {}        -> {}
     3 -> {2}       -> {{1}}
     5 -> {3}       -> {{2}}
    15 -> {2,3}     -> {{1},{2}}
    13 -> {6}       -> {{1,2}}
    39 -> {2,6}     -> {{1},{1,2}}
    65 -> {3,6}     -> {{2},{1,2}}
   195 -> {2,3,6}   -> {{1},{2},{1,2}}
    11 -> {5}       -> {{3}}
    33 -> {2,5}     -> {{1},{3}}
    55 -> {3,5}     -> {{2},{3}}
   165 -> {2,3,5}   -> {{1},{2},{3}}
   143 -> {5,6}     -> {{1,2},{3}}
   429 -> {2,5,6}   -> {{1},{1,2},{3}}
   715 -> {3,5,6}   -> {{2},{1,2},{3}}
  2145 -> {2,3,5,6} -> {{1},{2},{1,2},{3}}
		

Crossrefs

The sorted version is A329629, with empties A302494.
A019565 gives Heinz number of binary indices.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A326753 counts connected components for BII-numbers, ones A326749.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Times@@Prime/@(Times@@Prime/@#&/@bix/@bix[n]),{n,0,30}]

A371454 Numbers whose binary indices are all semiprimes.

Original entry on oeis.org

8, 32, 40, 256, 264, 288, 296, 512, 520, 544, 552, 768, 776, 800, 808, 8192, 8200, 8224, 8232, 8448, 8456, 8480, 8488, 8704, 8712, 8736, 8744, 8960, 8968, 8992, 9000, 16384, 16392, 16416, 16424, 16640, 16648, 16672, 16680, 16896, 16904, 16928, 16936, 17152
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
     8:           1000 ~ {4}
    32:         100000 ~ {6}
    40:         101000 ~ {4,6}
   256:      100000000 ~ {9}
   264:      100001000 ~ {4,9}
   288:      100100000 ~ {6,9}
   296:      100101000 ~ {4,6,9}
   512:     1000000000 ~ {10}
   520:     1000001000 ~ {4,10}
   544:     1000100000 ~ {6,10}
   552:     1000101000 ~ {4,6,10}
   768:     1100000000 ~ {9,10}
   776:     1100001000 ~ {4,9,10}
   800:     1100100000 ~ {6,9,10}
   808:     1100101000 ~ {4,6,9,10}
		

Crossrefs

Partitions of this type are counted by A101048, squarefree case A002100.
For primes instead of semiprimes we get A326782.
For prime indices instead of binary indices we have A339112, A339113.
The squarefree case is A371453.
A001358 lists semiprimes, squarefree A006881.
A005117 lists squarefree numbers.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    semi[n_]:=PrimeOmega[n]==2;
    Select[Range[10000],And@@semi/@bix[#]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A371454(n):
        def f(x,n): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        def A001358(n):
            m, k = n, f(n,n)
            while m != k:
                m, k = k, f(k,n)
            return m
        return sum(1<<A001358(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024

A368531 Numbers whose binary indices are all powers of 3, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion.

Original entry on oeis.org

0, 1, 4, 5, 256, 257, 260, 261, 67108864, 67108865, 67108868, 67108869, 67109120, 67109121, 67109124, 67109125, 1208925819614629174706176, 1208925819614629174706177, 1208925819614629174706180, 1208925819614629174706181, 1208925819614629174706432
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2023

Keywords

Comments

For powers of 2 instead of 3 we have A253317.

Examples

			The terms together with their binary expansions and binary indices begin:
         0:                           0 ~ {}
         1:                           1 ~ {1}
         4:                         100 ~ {3}
         5:                         101 ~ {1,3}
       256:                   100000000 ~ {9}
       257:                   100000001 ~ {1,9}
       260:                   100000100 ~ {3,9}
       261:                   100000101 ~ {1,3,9}
  67108864: 100000000000000000000000000 ~ {27}
  67108865: 100000000000000000000000001 ~ {1,27}
  67108868: 100000000000000000000000100 ~ {3,27}
  67108869: 100000000000000000000000101 ~ {1,3,27}
  67109120: 100000000000000000100000000 ~ {9,27}
  67109121: 100000000000000000100000001 ~ {1,9,27}
  67109124: 100000000000000000100000100 ~ {3,9,27}
  67109125: 100000000000000000100000101 ~ {1,3,9,27}
		

Crossrefs

A000244 lists powers of 3.
A048793 lists binary indices, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    Select[Range[0,10000],IntegerQ[Log[3,Times@@Join@@Position[Reverse[IntegerDigits[#,2]],1]]]&]
    (* Second program *)
    {0}~Join~Array[FromDigits[Reverse@ ReplacePart[ConstantArray[0, Max[#]], Map[# -> 1 &, #]], 2] &[3^(Position[Reverse@ IntegerDigits[#, 2], 1][[;; , 1]] - 1)] &, 255] (* Michael De Vlieger, Dec 29 2023 *)

Formula

a(3^n) = 2^(3^n - 1).

A370818 Number of sets of nonempty subsets of {1..n} with only one possible way to choose a set of different vertices of each edge.

Original entry on oeis.org

1, 2, 6, 45, 1352, 157647, 63380093, 85147722812, 385321270991130
Offset: 0

Views

Author

Gus Wiseman, Mar 12 2024

Keywords

Examples

			The set-system {{2},{1,2},{2,4},{1,3,4}} has unique choice (2,1,4,3) so is counted under a(4).
		

Crossrefs

This is the unique version of A367902, complement A367903.
Choosing a sequence gives A367904, ranks A367908.
The maximal case is A368601, complement A368600.
This is the restriction of A370638 to A000225.
Factorizations of this type are counted by A370645.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Union[Sort/@Select[Tuples[#],UnsameQ@@#&]]]==1&]],{n,0,3}]

Formula

a(n) = A370638(2^n - 1).
Binomial transform of A368601. - Christian Sievers, Aug 12 2024

Extensions

a(5)-a(8) from Christian Sievers, Aug 12 2024

A371290 Numbers whose product of binary indices is a prime power > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 64, 65, 128, 129, 130, 131, 136, 137, 138, 139, 256, 257, 260, 261, 1024, 1025, 4096, 4097, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 65536, 65537, 262144
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
       1:                   1 ~ {1}
       2:                  10 ~ {2}
       3:                  11 ~ {1,2}
       4:                 100 ~ {3}
       5:                 101 ~ {1,3}
       8:                1000 ~ {4}
       9:                1001 ~ {1,4}
      10:                1010 ~ {2,4}
      11:                1011 ~ {1,2,4}
      16:               10000 ~ {5}
      17:               10001 ~ {1,5}
      64:             1000000 ~ {7}
      65:             1000001 ~ {1,7}
     128:            10000000 ~ {8}
     129:            10000001 ~ {1,8}
     130:            10000010 ~ {2,8}
     131:            10000011 ~ {1,2,8}
     136:            10001000 ~ {4,8}
     137:            10001001 ~ {1,4,8}
     138:            10001010 ~ {2,4,8}
     139:            10001011 ~ {1,2,4,8}
     256:           100000000 ~ {9}
     257:           100000001 ~ {1,9}
     260:           100000100 ~ {3,9}
     261:           100000101 ~ {1,3,9}
    1024:         10000000000 ~ {11}
    1025:         10000000001 ~ {1,11}
    4096:       1000000000000 ~ {13}
    4097:       1000000000001 ~ {1,13}
   32768:    1000000000000000 ~ {16}
		

Crossrefs

For powers of 2 we have A253317.
For prime indices we have A320698.
For squarefree numbers instead of prime powers we have A371289.
A000040 lists prime numbers.
A000961 lists prime-powers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],#==1||PrimePowerQ[Times@@bpe[#]]&]

A327368 The positions of ones in the reversed binary expansion of n have integer mean and integer geometric mean.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 130, 256, 257, 512, 1024, 2048, 2084, 2316, 4096, 8192, 16384, 32768, 32776, 32777, 65536, 131072, 131074, 131200, 131457, 131462, 133390, 165920, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 8388640, 8388897, 8390688, 8519840
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2019

Keywords

Examples

			The sequence of terms together with their binary indices begins:
  2      {2}
  4      {3}
  8      {4}
  16     {5}
  32     {6}
  64     {7}
  128    {8}
  130    {2,8}
  256    {9}
  257    {1,9}
  512    {10}
  1024   {11}
  2048   {12}
  2084   {3,6,12}
  2316   {3,4,9,12}
  4096   {13}
  8192   {14}
  16384  {15}
  32768  {16}
  32776  {4,16}
		

Crossrefs

A superset of A327777.
Numbers whose binary indices have integer mean: A326669
Numbers whose binary indices have integer geometric mean: A326673

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],IntegerQ[Mean[bpe[#]]]&&IntegerQ[GeometricMean[bpe[#]]]&]
  • PARI
    ok(n)={my(s=0,p=1,k=0); for(i=0, logint(n,2), if(bittest(n,i), s+=i+1; p*=i+1; k++)); s%k==0 && ispower(p,k)}
    { for(n=1, 10^7, if(ok(n), print1(n, ", "))) } \\ Andrew Howroyd, Sep 29 2019

Extensions

a(33)-a(40) from Andrew Howroyd, Sep 29 2019

A327777 Prime numbers whose binary indices have integer mean and integer geometric mean.

Original entry on oeis.org

2, 257, 8519971, 36574494881, 140739702949921, 140773995710729, 140774004099109
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Conjecture: This sequence is infinite.

Examples

			The initial terms together with their binary indices:
                2: {2}
              257: {1,9}
          8519971: {1,2,6,9,18,24}
      36574494881: {1,6,8,16,18,27,32,36}
  140739702949921: {1,6,12,27,32,48}
  140773995710729: {1,4,9,12,18,32,36,48}
  140774004099109: {1,3,6,12,18,24,32,36,48}
		

Crossrefs

A subset of A327368.
The binary weight of prime(n) is A014499(n), with binary length A035100(n).
Heinz numbers of partitions with integer mean: A316413.
Heinz numbers of partitions with integer geometric mean: A326623.
Heinz numbers with both: A326645.
Subsets with integer mean: A051293
Subsets with integer geometric mean: A326027
Subsets with both: A326643
Partitions with integer mean: A067538
Partitions with integer geometric mean: A067539
Partitions with both: A326641
Strict partitions with integer mean: A102627
Strict partitions with integer geometric mean: A326625
Strict partitions with both: A326029
Factorizations with integer mean: A326622
Factorizations with integer geometric mean: A326028
Factorizations with both: A326647
Numbers whose binary indices have integer mean: A326669
Numbers whose binary indices have integer geometric mean: A326673
Numbers whose binary indices have both: A327368

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Prime[Range[1000]],IntegerQ[Mean[bpe[#]]]&&IntegerQ[GeometricMean[bpe[#]]]&]

Extensions

a(4)-a(7) from Giovanni Resta, Dec 01 2019

A369880 Decimal expansion of sinh(Pi/2)/(Pi/2)^2.

Original entry on oeis.org

9, 3, 2, 6, 8, 1, 3, 1, 4, 7, 8, 6, 3, 5, 1, 0, 1, 7, 7, 7, 3, 6, 9, 7, 5, 5, 7, 8, 0, 7, 9, 9, 0, 2, 3, 5, 0, 6, 6, 1, 9, 2, 0, 9, 3, 8, 7, 6, 9, 7, 5, 3, 1, 5, 4, 5, 6, 3, 4, 1, 2, 6, 4, 4, 0, 3, 1, 5, 6, 8, 4, 7, 9, 2, 1, 1, 6, 4, 4, 1, 1, 3, 9, 5, 6, 1, 9, 6, 2, 2, 8, 8, 5, 3, 9, 6, 5, 3, 8, 7, 4, 1, 7, 7, 1
Offset: 0

Views

Author

Amiram Eldar, Feb 04 2024

Keywords

Examples

			0.93268131478635101777369755780799023506619209387697...
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 424.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[Pi/2]/(Pi/2)^2, 10, 120][[1]]
  • PARI
    sinh(Pi/2)/(Pi/2)^2

Formula

Equals Sum_{k>=0} (-1/16)^A000120(k)/D(k)^4, where D(k) = A096111(k-1) for k >= 1, and D(0) = 1 (Borwein and Borwein, 1992).

A370819 Number of subsets of {1..n-1} whose cardinality is one less than the length of the binary expansion of n; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 10, 15, 35, 56, 84, 120, 165, 220, 286, 364, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398, 850668
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2024

Keywords

Examples

			The a(1) = 1 through a(7) = 15 subsets:
  {}  {1}  {1}  {1,2}  {1,2}  {1,2}  {1,2}
           {2}  {1,3}  {1,3}  {1,3}  {1,3}
                {2,3}  {1,4}  {1,4}  {1,4}
                       {2,3}  {1,5}  {1,5}
                       {2,4}  {2,3}  {1,6}
                       {3,4}  {2,4}  {2,3}
                              {2,5}  {2,4}
                              {3,4}  {2,5}
                              {3,5}  {2,6}
                              {4,5}  {3,4}
                                     {3,5}
                                     {3,6}
                                     {4,5}
                                     {4,6}
                                     {5,6}
		

Crossrefs

The version without subtracting one is A357812.
Dominates A370641, see also A370640.
A007318 counts subsets by cardinality.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    Table[If[n==0,0,Binomial[n-1,IntegerLength[n,2]-1]],{n,0,15}]

Formula

a(n) = binomial(n - 1, A029837(n+1) - 1) = binomial(n - 1, A113473(n) - 1) = binomial(n - 1, A070939(n) - 1) for n > 0.
Previous Showing 81-90 of 93 results. Next