cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A364861 Numbers k such that k and k+1 are both S-abundant numbers (A181487).

Original entry on oeis.org

5984, 7424, 21944, 39375, 56924, 77175, 82004, 84524, 89775, 109395, 116655, 158235, 174824, 180495, 185535, 188055, 193544, 200024, 209055, 235935, 238095, 240344, 245024, 250964, 256095, 261260, 262184, 263024, 266475, 279279, 282975, 283815, 294975, 297296
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2023

Keywords

Comments

De Koninck and Ivić found that the least number k such that k, k+1, and k+2 are 3 consecutive integers that are S-abundant numbers is 171078830 (which is also the first term of A096536).

Crossrefs

Subsequence of A181487.

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {1}, a = {}, sum, q1 = False, q2}, Do[sum = Total[Select[Divisors[k], MemberQ[s, #] &]]; q2 = sum > k; If[!q2, AppendTo[s, k]]; If[q1 && q2, AppendTo[a, k-1]]; q1 = q2, {k, 2, kmax}]; a]; seq[40000]
  • PARI
    lista(nmax) = {my(c = 0, s, q1 = 0, q2); for(n=2, nmax, if(sumdiv(n, d, !bittest(c, d)*d) > 2*n, c+=1<M. F. Hasler at A181487

A383390 Numbers k such that k^2 and (k+1)^2 are both abundant numbers.

Original entry on oeis.org

104, 495, 584, 735, 944, 1155, 1364, 1484, 2144, 2204, 2415, 2624, 2924, 2925, 3135, 3255, 3794, 3795, 4304, 4484, 4784, 4844, 5264, 5355, 5445, 5564, 5565, 5655, 5775, 5984, 6104, 6764, 7424, 7455, 7664, 7755, 7875, 8084, 8294, 8295, 8414, 8415, 8924, 9009, 9344, 9944, 9975
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2025

Keywords

Comments

The numbers of terms that do not exceed 10^k, for k = 3, 4, ..., are 5, 47, 459, 4655, 46733, 460693, 4612685, 46177602, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00461... .

Crossrefs

Subsequence of A381738.
A383391 and A096399 are subsequences.

Programs

  • Mathematica
    Select[Range[10000], DivisorSigma[-1, #^2] > 2 && DivisorSigma[-1, (#+1)^2] > 2 &]
  • PARI
    is1(k) = {my(f = factor(k)); prod(i = 1, #f~, f[i,2] *= 2); sigma(f, -1) > 2;}
    list(lim) = {my(q1 = is1(1), q2); for(k = 2, lim, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}

A295042 Numbers k such that both k and (k+1) are abundant, and neither is divisible by 3.

Original entry on oeis.org

55959128224, 68972878975, 91653987424, 171967420624, 350441716624, 372944997424, 386136575824, 711480344575, 769856312224, 789255692224, 818564922175, 997039218175, 1071710665024, 1216042052224, 1340586071824, 1925671372624, 1954925637664, 2045947528624
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2017

Keywords

Comments

Subsequence of A096399.
All terms are of the form 3j+1, with j = 18653042741, 22990959658, 30551329141, 57322473541, 116813905541, 124314999141, 128712191941, 237160114858, 256618770741, 263085230741, 272854974058, 332346406058, ...

Examples

			k = 55959128224 is in the sequence as sigma(k) > 2*k and sigma(k + 1) > 2*(k + 1). - _David A. Corneth_, Apr 11 2021
		

Crossrefs

Programs

  • Mathematica
    abQ[n_] := Mod[n, 3] > 0 && DivisorSigma[1, n] > 2 n; abQ1[n_] := abQ[n - 1]; abQ2[n_] := abQ[n + 1]; s = Import["b115414.txt", "Data"][[All, -1]]; s1 = Select[s, abQ1] - 1; s2 = Select[s, abQ2]; seq = Union[s1, s2] (* using the b-File from A115414 *)
  • PARI
    isoka(n) = (n%3) && (sigma(n) > 2*n);
    isok(n) = isoka(n) && isoka(n+1); \\ Michel Marcus, Nov 13 2017

Extensions

a(13)-a(18) from Giovanni Resta, Aug 22 2018

A333054 Numbers m such that r(m) > r(k) for all k < m, where r(m) = min(sigma(m)/m, sigma(m+1)/(m+1)), and sigma(m) is the sum of divisors of m (A000203).

Original entry on oeis.org

1, 2, 8, 14, 44, 104, 495, 944, 4095, 5775, 5984, 21735, 98175, 862784, 4096575, 7194824, 14753024, 879207615, 1969789184, 2275962975, 3968862975, 12567844575, 39566665215, 44803620225, 77510285775, 125617830975, 162902829375
Offset: 1

Views

Author

Amiram Eldar, Mar 06 2020

Keywords

Comments

The corresponding values of r(a(n)) are 1, 1.333..., 1.444..., 1.6, 1.733..., 1.828..., 1.890..., 1.970..., 1.999..., 2.044..., 2.085..., 2.120..., 2.181..., 2.243..., 2.248..., 2.252..., 2.360..., 2.397..., 2.407..., 2.408..., 2.411...
The least number m such that both m and m+1 are k-abundant (i.e., their abundancy indices sigma(m)/m > k and sigma(m+1)/(m+1) > k) is a term in this sequence. E.g., a(10) = 5775 = A096399(1).
a(28) > 5*10^11. - Amiram Eldar, Jan 02 2021

Examples

			The values of min(sigma(k)/k, sigma(k+1)/(k+1)) for k = 1, 2, ... 8 are 1, 4/3, 4/3, 6/5, 6/5, 8/7, 8/7, 13/9. The record values in this range, 1, 4/3 and 13/9, are obtained at k = 1, 2, and 8.
		

Crossrefs

Programs

  • Mathematica
    seq={}; rminmax = 0; r1 = 1; Do[r2 = DivisorSigma[1, n]/n; rmin = Min[r1, r2]; If[rmin > rminmax, rminmax = rmin; AppendTo[seq, n-1]]; r1 = r2, {n, 2, 10^6}]; seq

Extensions

a(22)-a(27) from Amiram Eldar, Jan 02 2021

A339937 Numbers k such that k and k+1 are both coreful abundant numbers (A308053).

Original entry on oeis.org

2282175, 33350624, 46734975, 86424975, 87152624, 105674624, 126114975, 169707824, 179762624, 214491375, 221370975, 235857824, 266022224, 270586575, 278524575, 297774224, 360021375, 372683024, 380858624, 395715375, 425840624, 470624175, 489873824, 503963775
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Examples

			2282175 is a term since 2282175 and 2282176 are both coreful abundant numbers.
		

Crossrefs

Subsequence of A308053.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); abQ[n_] := s[n] > 2*n; q1 = False; seq = {}; Do[q2 = abQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 10^8}]; seq

A347937 Numbers k such that k and k+1 are both terms of A347935.

Original entry on oeis.org

2282175, 16769024, 18356624, 27252224, 32493824, 35820224, 46577024, 50968575, 51962624, 53992575, 55130624, 61854975, 63101024, 63140175, 69980624, 72525375, 73378304, 74376224, 80791424, 82389824, 98834175, 102650624, 105674624, 107769375, 109001024, 110238975
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2021

Keywords

Examples

			2282175 is a term since A187795(2282175) = 4801650 > 2*2282175 = 4564350 and A187795(2282176) = 4630080 > 2*2282176 = 4564352.
		

Crossrefs

Subsequence of A005101, A096399 and A347935.

Programs

  • Mathematica
    abQ[n_] := DivisorSigma[1, n] > 2*n; s[n_] := DivisorSum[n, # &, abQ[#] &]; q[n_] := s[n] > 2*n; seq = {}; q1 = q[1]; Do[q2 = q[n]; If[q1 && q2, AppendTo[seq, n-1]]; q1 = q2, {n, 2, 2*10^7}]; seq
  • PARI
    isok1(k) = sumdiv(k, d, if (sigma(d)>2*d, d)) > 2*k; \\ A347935
    isok(k) = isok1(k) && isok1(k+1); \\ Michel Marcus, Sep 20 2021

A348276 Numbers k such that k and k+1 are both noninfinitary abundant numbers (A348274).

Original entry on oeis.org

64198575, 84909824, 86424975, 110238975, 113223824, 191206575, 211266224, 224722575, 231058575, 231800624, 240069375, 240584175, 245383424, 262648575, 262911824, 279597824, 293893424, 297774224, 333773055, 338676975, 340250624, 340829775, 347244975, 372683024
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Examples

			64198575 is a term since A348271(64198575) = 69470136 > 64198575 and A348271(64198576) = 65363424 > 64198576.
		

Crossrefs

Cf. A348271.
Subsequence of A096399 and A348274.
Similar sequences: A318167, A327635, A327942, A331412.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := DivisorSigma[1,n] - isigma[n] > n; seq = {}; q1 = q[1]; Do[q2 = q[n]; If[q1 && q2, AppendTo[seq, n-1]]; q1=q2 ,{n,2,10^8}]; seq

A348606 Numbers k such that k and k+1 are both nonexponential abundant numbers.

Original entry on oeis.org

21735, 76544, 170624, 301664, 345344, 348704, 382304, 739935, 862784, 1218944, 1262624, 1272704, 1314495, 1370655, 1376864, 1539615, 1558304, 1707615, 1718144, 1761375, 1845375, 1890944, 1926015, 2100735, 2132864, 2223584, 2415104, 2463615, 2581215, 2675295, 2747744
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Examples

			21735 is a term since A160135(21735) = 21930 > 21735 and A160135(21736) = 23230 > 21736.
		

Crossrefs

Cf. A160135.
Subsequence of A096399 and A348604.
Similar sequences: A318167, A327635, A327942, A331412, A348276.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[1, 3*10^6], q[#] && q[#+1] &]

A380933 Numbers k such that k and k+1 are both in A380929.

Original entry on oeis.org

121643775, 157390064, 161019495, 275734304, 584899875, 1493214975, 1614323655, 2043708975, 3081783375, 3118599224, 3426851295, 3902652495, 3947893424, 5849043375, 11731509855, 12138531615, 13008843224, 14598032624, 17588484584, 19782621495, 20191564575, 20759209064
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Numbers k such that A380845(k) > 2*k and A380845(k+1) > 2*(k+1).

Examples

			121643775 is a term since A380845(121643775) = 244722015 > 2 * 121643775 = 243287550, and A380845(121643776) = 256456081 > 2 * 121643776 = 243287552.
		

Crossrefs

Subsequence of A096399 and A380929.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k];
    seq[lim_] := Module[{s = {}}, Do[If[q[k], If[q[k-1], AppendTo[s, k-1]]; If[q[k+1], AppendTo[s, k]]], {k, 3, lim, 2}]; s];
    seq[3*10^8]
  • PARI
    isab(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}
    list(lim) = forstep(k = 3, lim, 2, if(isab(k), if(isab(k-1), print1(k-1, ", ")); if(isab(k+1), print1(k, ", "))));

A331202 a(n) is the smallest abundant number that differs from the next abundant number by n.

Original entry on oeis.org

5775, 18, 942, 20, 5391411025, 12
Offset: 1

Views

Author

Jaroslav Krizek, Jan 16 2020

Keywords

Comments

Sequence is finite; any multiple of 6 is abundant.

Crossrefs

Cf. Sequences of abundant numbers that differ from the next abundant number by k for any k: A096399 (k = 1), A228382 (k = 3), A316098 (k = 4), A306497 (k = 5), A316099 (k = 6).
Cf. A005101 (abundant numbers), A094268.
Cf. A329525 (smallest abundant numbers k such that k and k+n are both abundant).
Previous Showing 31-40 of 42 results. Next