cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A254004 Numbers that divide the reverse of the sum of their divisors.

Original entry on oeis.org

1, 14, 69, 102, 123, 134, 164, 276, 639, 2556, 9568, 1259196, 1333334, 1473381, 1741983, 133333334, 821554911, 929247534, 1333333334, 22214600673, 133333333334
Offset: 1

Views

Author

Paolo P. Lava, Jan 22 2015

Keywords

Comments

Noting 14, 134, 1333334, 133333334, it appears that (4*10^n+2)/3 is a term herein for any n in A096507. - Hans Havermann, Jan 24 2015
a(22) > 10^12. - Giovanni Resta, May 09 2015

Examples

			sigma(14) = 24, Rev(24) = 42 and 42 / 14 = 3.
sigma(69) = 96, Rev(96) = 69 and 69 / 69 = 1.
sigma(9568) = 21168, Rev(21168) = 86112 and 86112 / 9568 = 9.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | Seqint(Reverse(Intseq(SumOfDivisors(n)))) mod n eq 0]; // Bruno Berselli, Jan 22 2015
    
  • Maple
    with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
    od; y; end:
    P:=proc(q) local n; for n from 1 to q do
    if type(T(sigma(n))/n,integer) then print(n);
    fi; od; end: P(10^9);
  • Mathematica
    Select[Range@ 2000000, Mod[FromDigits@ Reverse@ IntegerDigits@ DivisorSigma[1, #], #] == 0 &] (* Michael De Vlieger, May 09 2015 *)
  • PARI
    isok(n) = !(eval(concat(Vecrev(Str(sigma(n))))) % n); \\ Michel Marcus, Feb 27 2015

Extensions

a(17)-a(20) from Lars Blomberg, Feb 27 2015
a(21) from Giovanni Resta, May 09 2015

A380984 Primes p such that p*(p-1) consists of exactly two different decimal digits.

Original entry on oeis.org

5, 7, 11, 17, 67, 101, 167, 1667, 166667, 666667, 66666667, 666666667, 1666666667, 66666666667, 166666666667, 166666666666667, 66666666666666666667
Offset: 1

Views

Author

Robert Israel, Feb 11 2025

Keywords

Comments

Primes in A380974.
Contains (10^k+2)/6 for k in A076850 and (2*10^k + 1)/3 for k in A096507. It is conjectured that these sequences are infinite.
The last decimal digit of a(n)*(a(n)-1) is either 0, 2 or 6. - Chai Wah Wu, Feb 19 2025

Examples

			a(5) = 67 is a term because it is prime and 67 * 66 = 4422 consists of digits 2 and 4.
		

Crossrefs

Programs

  • Maple
    p:= 1: R:= NULL: count:= 0:
    while count < 11 do
    p:= nextprime(p);
    if nops(convert(convert(p*(p-1),base,10),set)) = 2 then
         R:= R,p; count:= count+1
    fi;
    od:
    R;
  • Mathematica
    Select[Prime[Range[10^6]],Length[Union[IntegerDigits[#(#-1)]]]==2&] (* James C. McMahon, Feb 13 2025 *)
  • PARI
    isok(k) = isprime(k) && #Set(digits(k*(k-1))) == 2; \\ Michel Marcus, Feb 11 2025
    
  • Python
    from math import isqrt
    from itertools import count, combinations, product, islice
    from sympy import isprime
    def A380984_gen(): # generator of terms
        for n in count(1):
            c = []
            for a in combinations('0123456789',2):
                if '0' in a or '2' in a or '6' in a:
                    for b in product(a,repeat=n):
                        if b[0] != '0' and b[-1] in {'0','2','6'} and b != (a[0],)*n and b != (a[1],)*n:
                            m = int(''.join(b))
                            q = isqrt(m)
                            if q*(q+1)==m and isprime(q+1):
                                c.append(q+1)
            yield from sorted(c)
    A380984_list = list(islice(A380984_gen(),10)) # Chai Wah Wu, Feb 19 2025

Extensions

a(12)-a(17) from Jinyuan Wang, Feb 12 2025

A098209 a(n) = A067275(n+1)^2 - 1.

Original entry on oeis.org

0, 48, 4488, 444888, 44448888, 4444488888, 444444888888, 44444448888888, 4444444488888888, 444444444888888888, 44444444448888888888, 4444444444488888888888, 444444444444888888888888
Offset: 0

Views

Author

Labos Elemer, Oct 20 2004

Keywords

Comments

Certain functions of near or generalized repdigits provide interesting digit patterns like e.g: -1+(666666667)^2=444444444888888888.

Crossrefs

Extensions

Definition corrected by Georg Fischer, Jun 27 2020

A294396 Numbers k such that 12*10^k + 1 is prime.

Original entry on oeis.org

0, 2, 38, 80, 9230, 25598, 39500
Offset: 1

Views

Author

Patrick A. Thomas, Feb 12 2018

Keywords

Comments

k must be even since 12*10^k + 1 is divisible by 11 if k is odd. - Robert G. Wilson v, Feb 12 2018
a(7) > 27440. - Robert G. Wilson v, Feb 17 2018
a(8) > 10^5. - Jeppe Stig Nielsen, Jan 31 2023

Examples

			13 and 1201 are prime, so 0 and 2 are the initial values.
		

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[12*10^# +1], #, Nothing] &, 2 + 6Range@ 4500] (* Robert G. Wilson v, Feb 13 2018 *)
  • PARI
    isok(k) = isprime(12*10^k + 1); \\ Altug Alkan, Mar 04 2018

Extensions

a(5) from Robert G. Wilson v, Feb 12 2018
a(6) from Robert G. Wilson v, Feb 13 2018
a(7) from Jeppe Stig Nielsen, Jan 28 2023
Previous Showing 11-14 of 14 results.