cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 76 results. Next

A384405 Consecutive internal states of the linear congruential pseudo-random number generator 69621 * s mod (2^31-1) when started at s=1.

Original entry on oeis.org

1, 69621, 552116347, 1082396834, 201323037, 1832878655, 1219051368, 874078441, 971035822, 1699755902, 1619285207, 1953863635, 1883480414, 143449980, 1332099030, 837788288, 2002546328, 344571154, 1995975644, 300997201, 580703395, 623924873, 1121855264
Offset: 1

Views

Author

Sean A. Irvine, May 27 2025

Keywords

Comments

Periodic with period 2^31-2.
Presented by Carta as an alternative to Park and Miller's Minimal Standard Generator.

Crossrefs

Programs

  • Mathematica
    NestList[Mod[69621*#, 2^31 - 1] &, 1, 50] (* Paolo Xausa, Jun 04 2025 *)

Formula

a(n) = 69621 * a(n-1) mod (2^31-1).

A384448 Consecutive states of the linear congruential pseudo-random number generator for the INMOS Transputer when started at 1.

Original entry on oeis.org

1, 1664525, 389569705, 2940799637, 158984081, 2862450781, 3211393721, 1851289957, 3934847009, 2184914861, 246739401, 1948736821, 2941245873, 4195587069, 4088025561, 980655621, 2001863745, 657792333, 65284841, 1282409429, 3808694225, 2968195997, 2417331449
Offset: 1

Views

Author

Sean A. Irvine, May 29 2025

Keywords

Comments

Periodic with period 2^30.

Crossrefs

Cf. A096550-A096561 other pseudo-random number generators.

Programs

  • Mathematica
    NestList[Mod[1664525*#, 2^32] &, 1, 50] (* Paolo Xausa, May 30 2025 *)

Formula

a(n) = 1664525 * a(n-1) mod 2^32.

A384567 Consecutive states of the linear congruential pseudo-random number generator for the Atari ST when started at 1.

Original entry on oeis.org

1, 3141592622, 1588972055, 1279602700, 1481914909, 3913565466, 2610266515, 1903286488, 936717817, 3104230086, 4091513039, 469042788, 2999973781, 54420274, 4053162955, 3383133360, 3380310769, 456637022, 465319559, 936566716, 2283027469, 2613197898, 63902979
Offset: 1

Views

Author

Sean A. Irvine, Jun 03 2025

Keywords

Comments

Periodic with period 2^32.

References

  • Megamax Inc., Laser C: C Language Development System, Atari ST, 1988 (see p. 514).

Crossrefs

Cf. A096550-A096561 (other pseudo-random number generators).

Programs

  • Mathematica
    NestList[Mod[3141592621*# + 1, 2^32] &, 1, 50] (* Paolo Xausa, Jun 05 2025 *)

Formula

a(n) = (3141592621 * a(n-1) + 1) mod 2^32.

A384608 Consecutive states of the linear congruential pseudo-random number generator (129*s+27098671125) mod 2^35 when started at s=1.

Original entry on oeis.org

1, 27098671254, 18133949355, 29915928896, 3603063125, 10857477098, 18963943679, 33905981588, 2923784873, 26309797694, 19448475219, 27691073512, 25834363901, 26836992658, 18737148839, 4649447228, 8402072913, 11454449126, 27253858555, 3793372816, 1047688869
Offset: 1

Views

Author

Sean A. Irvine, Jun 04 2025

Keywords

Comments

Periodic with period 2^35.
The first set of numbers on p. 156 of Hirsh is reproduced by s/2^35 starting with s=4818528277.

References

  • Seymour C. Hirsh, BASIC Programming Self-Taught, Reston Pub Co, Reston, VA, 1980 (see p. 156).
  • Donald E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms (3rd ed.), Addison-Wesley, 1998 (see p. 106).

Crossrefs

Cf. A096550-A096561 for other pseudo-random number generators.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(129*a(n-1)+27098671125, 2^35))
        end:
    seq(a(n), n=1..21);  # Alois P. Heinz, Jun 04 2025
  • Mathematica
    NestList[Mod[129*# + 27098671125, 2^35] &, 1, 30] (* Paolo Xausa, Jun 12 2025 *)

Formula

a(n) = (129*a(n-1) + 27098671125) mod 2^35.

A384643 Consecutive states of the linear congruential pseudo-random number generator for Simula on the UNIVAC when started at 1.

Original entry on oeis.org

1, 30517578125, 4728272809, 14042552597, 5475208593, 22652899805, 14780701625, 12079957477, 33211157537, 21459834669, 11626649801, 22641538997, 32099503025, 31057406333, 28470525657, 2272198277, 31308848193, 23703460045, 6636903913, 5151124053, 2502905297
Offset: 1

Views

Author

Sean A. Irvine, Jun 05 2025

Keywords

Comments

Periodic with period 2^33.

References

  • UNIVAC 1106/1108 SIMULA Programmer Reference, UP-7556 Rev. 1, (1971).

Crossrefs

Cf. A096550-A096561 other pseudo-random number generators.

Programs

  • Mathematica
    NestList[Mod[5^15*#, 2^35] &, 1, 30] (* Paolo Xausa, Jun 12 2025 *)

Formula

a(n) = 5^15 * a(n-1) mod 2^35.

A384935 Consecutive states of the linear congruential pseudo-random number generator 513*s mod (2^31-1) when started at s=1.

Original entry on oeis.org

1, 513, 263169, 135005697, 538445857, 1344817825, 549293538, 467227237, 1316887764, 1253557774, 977527609, 1107973666, 1454807850, 1139601541, 500038549, 969221644, 1141980915, 1720657411, 81472926, 993421745, 671730846, 1000540478, 28673581, 1824645171
Offset: 1

Views

Author

Sean A. Irvine, Jun 12 2025

Keywords

Comments

Periodic with period 2^31-2.

Crossrefs

Cf. A096550.

Programs

  • Mathematica
    NestList[Mod[513*#, 2^31 - 1] &, 1, 30] (* Paolo Xausa, Jun 13 2025 *)

Formula

a(n) = 513 * a(n-1) mod (2^31-1).

A096559 Consecutive states of a linear congruential pseudo-random number generator that has the spectrally best primitive root for 2^31-1 as multiplier.

Original entry on oeis.org

1, 62089911, 847344462, 1061653656, 1954074819, 226824280, 953102500, 1452288378, 50913524, 2133871779, 1843965925, 427233754, 195855103, 1546822229, 1652729917, 1636805220, 217994169, 1312006067, 208869911, 310792805, 675992938, 1109700100, 855351136, 863373758
Offset: 1

Views

Author

Hugo Pfoertner, Aug 14 2004

Keywords

Comments

The results of the spectral tests for this generator are given in line 18 of Table 1 in D. Knuth's TAOCP vol. 2, page 106.

References

  • G. A. Fishman, L. R. Moore III; An exhaustive analysis of multiplicative congruential random number generators with modulus 2^31-1. SIAM Journal on Scientific and Statistical Computing, Volume 7, Issue 1 (1986), 24-45. Erratum, ibid, Vol. 7, Issue 3 (1986) p. 1058.
  • D. E. Knuth, The Art of Computer Programming Third Edition. Vol. 2 Seminumerical Algorithms. Chapter 3.3.4 The Spectral Test, Page 108. Addison-Wesley 1997.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(62089911 *a(n-1), 2147483647))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    NestList[Mod[#*62089911, 2^31 - 1] &, 1, 50] (* Paolo Xausa, Aug 29 2024 *)
  • PARI
    a(n)=lift(Mod(62089911,2147483647)^(n-1)) \\ M. F. Hasler, May 14 2015

Formula

a(1)=1, a(n)=62089911*a(n-1) mod (2^31-1).

A383798 Consecutive states of the linear congruential pseudo-random number generator for SIMSCRIPT II when started at 1.

Original entry on oeis.org

1, 630360016, 1549035330, 264620982, 529512731, 1896697821, 2116530888, 1923129168, 1674201058, 108088067, 859154222, 1946499387, 1377890442, 1382793310, 768302678, 1014576563, 514017889, 2050350098, 1928578391, 863848128, 246801402, 166165530, 709020555
Offset: 1

Views

Author

Sean A. Irvine, May 28 2025

Keywords

Comments

Periodic with period 2^31-2.

References

  • P. J. Kiviat, R. Villanueva, and H. Markowitz, The Simscript II Programming Language, Prentice-Hall, 1969.

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else 630360016 * Self(n-1) mod (2^31-1): n in [1..30]]; // Vincenzo Librandi, May 29 2025
  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(630360016*a(n-1), 2^31-1))
        end:
    seq(a(n), n=1..23);  # Alois P. Heinz, May 29 2025
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==Mod[a[n-1]*630360016,(2^31-1)]},a,{n,1,30}] (* Vincenzo Librandi, May 29 2025 *)

Formula

a(n) = 630360016 * a(n-1) mod (2^31-1).

A383956 Consecutive states of the linear congruential pseudo-random number generator used by BASIC on the Poly-1 computer when started at 1.

Original entry on oeis.org

1, 7771826, 12906479, 12752200, 14370573, 4177230, 16102619, 5888068, 8967385, 14199722, 1838727, 7559424, 14513509, 9092550, 15771891, 2282364, 11580593, 15929250, 14479391, 2474936, 6872765, 1998142, 6754315, 6251956, 4652937, 6660762, 6157495, 1357168
Offset: 1

Views

Author

Sean A. Irvine, May 15 2025

Keywords

Comments

The sequence is periodic with period 2^24.
In Poly-1 BASIC, random numbers were generated with the RND(m) function. With RND(0) the internal state was returned as a floating-point number state/2^24, otherwise the state was return modulo m.

Crossrefs

Cf. A096550-A096561 other pseudo-random number generators.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(4253261*a(n-1)+3518565, 2^24))
        end:
    seq(a(n), n=1..28);  # Alois P. Heinz, May 21 2025
  • Mathematica
    NestList[Mod[4253261*# + 3518565, 2^24] &, 1, 50] (* Paolo Xausa, May 22 2025 *)

Formula

a(n) = (4253261 * a(n-1) + 3518565) mod 2^24.

A384240 Consecutive states of the linear congruential pseudo-random number generator (2897*s + 1) mod 2^23 when started at s=1.

Original entry on oeis.org

1, 2898, 6899, 3209188, 2439973, 5393846, 6383767, 5280968, 6531913, 6640922, 3672891, 3610284, 6787181, 7954814, 1589983, 834960, 2960017, 2011874, 6705027, 4835700, 47541, 3508550, 5665063, 3570264, 8289753, 7218346, 7137227, 7016508, 1226493, 4769038
Offset: 1

Views

Author

Sean A. Irvine, May 22 2025

Keywords

Comments

Periodic with period 2^23.

References

  • M. R. Eagle, Introduction to BASIC, 1976.

Crossrefs

Cf. A096550-A096561 other pseudo-random number generators.

Programs

  • Mathematica
    NestList[Mod[2897*# + 1, 2^23] &, 1, 50] (* Paolo Xausa, May 23 2025 *)

Formula

a(n) = (2897 * a(n-1) + 1) mod 2^23.
Previous Showing 51-60 of 76 results. Next