cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A356826 Numbers k such that 2^k - 29 is prime.

Original entry on oeis.org

5, 8, 104, 212, 79316, 102272, 225536, 340688
Offset: 1

Views

Author

Craig J. Beisel, Aug 29 2022

Keywords

Comments

A particularly low-density pseudo-Mersenne sequence. I have verified that there are no additional terms for k < 5*10^4. For k = a(5), a(6), a(7), and a(8), 2^k - 29 is a probable prime (see link).
The terms a(5)-a(8) were discovered by Henri Lifchitz (see link). - Elmo R. Oliveira, Nov 29 2023
Empirically: except for 5, all terms are even. - Elmo R. Oliveira, Nov 29 2023

Examples

			5 is a term because 2^5 - 29 = 3 is prime.
8 is a term because 2^8 - 29 = 227 is prime.
		

Crossrefs

Cf. A096502.
Cf. Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), A059609 (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), this sequence (d=29).

Programs

  • PARI
    for(n=2, 1000, if(isprime(2^n-29), print1(n, ", ")))

A238797 Smallest k such that 2^k - (2*n+1) and (2*n+1)*2^k - 1 are both prime, k <= 2*n+1, or 0 if no such k exists.

Original entry on oeis.org

0, 3, 4, 0, 0, 0, 0, 5, 6, 5, 7, 6, 9, 5, 0, 7, 6, 6, 0, 0, 10, 0, 6, 0, 7, 9, 6, 7, 8, 0, 17, 8, 0, 0, 7, 0, 0, 18, 0, 0, 0, 8, 0, 10, 8, 9, 18, 0, 0, 7, 0, 0, 8, 12, 0, 7, 0, 11, 16, 0, 21, 0, 0, 0, 8, 14, 0, 0, 18, 9, 10, 8, 77, 0, 0, 0, 12, 8, 0, 11, 18, 0
Offset: 0

Views

Author

Keywords

Comments

Numbers n such that 2^k - (2*n+1) and (2*n+1)*2^k - 1 are both prime:
For k = 0: 2, 3, 5, 7, 13, 17, ... Intersection of A000043 and A000043
for k = 1: 3, 4, 6, 94, ... Intersection of A050414 and A002235
for k = 2: 4, 8, 10, 12, 18, 32, ... Intersection of A059608 and A001770
for k = 3: Intersection of A059609 and A001771
for k = 4: 21, ... Intersection of A059610 and A002236
for k = 5: Intersection of A096817 and A001772
for k = 6: Intersection of A096818 and A001773
for k = 7: 5, 10, 14, ... Intersection of A059612 and A002237
for k = 8: 6, 16, 20, 36, ... Intersection of A059611 and A001774
for k = 9: 5, 21, ... Intersection of A096819 and A001775
for k = 10: 7, 13, ... Intersection of A096820 and A002238
for k = 11: 6, 8, 12, ...
for k = 12: 9, ...
for k = 13: 5, 8, 10, ...

Examples

			a(1) = 3 because 2^3 - (2*1+1) = 5 and (2*1+1)*2^3 - 1 = 23 are both prime, 3 = 2*1+1,
a(2) = 4 because 2^4 - (2*2+1) = 11 and (2*2+1)*2^4 - 1 = 79 are both prime, 4 < 2*2+1 = 5.
		

Crossrefs

Cf. A238748, A238904 (smallest k such that 2^k + (2n+1) and (2n+1)*2^k + 1 are both prime, k <= n, or -1 if no such k exists).

Programs

  • Mathematica
    a[n_] := Catch@ Block[{k = 1}, While[k <= 2*n+1, If[2^k - (2*n + 1) > 0 && PrimeQ[2^k - (2*n+1)] && PrimeQ[(2*n + 1)*2^k-1], Throw@k]; k++]; 0]; a/@ Range[0, 80] (* Giovanni Resta, Mar 15 2014 *)

Extensions

a(0), a(19), a(20) corrected by Giovanni Resta, Mar 13 2014

A238749 Exponents of third Mersenne prime pair: numbers n such that 2^n - 5 and 5*2^n - 1 are both prime.

Original entry on oeis.org

4, 8, 10, 12, 18, 32
Offset: 1

Views

Author

Keywords

Comments

a(7) > 350028.
Intersection of A059608 and A001770.
Exponents of Mersenne prime pairs {2^n - (2k + 1), (2k + 1)*2^n - 1}:
for k = 0: 2, 3, 5, 7, 13, 17, ... Intersection of A000043 and A000043
for k = 1: 3, 4, 6, 94, ... Intersection of A050414 and A002235
for k = 2: 4, 8, 10, 12, 18, 32, ... Intersection of A059608 and A001770
for k = 3: Intersection of A059609 and A001771
for k = 4: 21, ... Intersection of A059610 and A002236
for k = 5: Intersection of A096817 and A001772
for k = 6: Intersection of A096818 and A001773
for k = 7: 5, 10, 14, ... Intersection of A059612 and A002237
for k = 8: 6, 16, 20, 36, ... Intersection of A059611 and A001774
for k = 9: 5, 21, ... Intersection of A096819 and A001775
for k = 10: 7, 13, ... Intersection of A096820 and A002238
for k = 11: 6, 8, 12, ...
for k = 12: 9, ...
for k = 13: 5, 8, 10, ...
for k = 14:

Examples

			a(1) = 4 because 2^4 - 5 = 11 and 5*2^4 - 1 = 79 are both primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | IsPrime(2^n-5) and IsPrime(5*2^n-1)]; // Vincenzo Librandi, May 17 2015
  • Mathematica
    fQ[n_] := PrimeQ[2^n - 5] && PrimeQ[5*2^n - 1]; k = 1; While[ k < 15001, If[fQ@ k, Print@ k]; k++] (* Robert G. Wilson v, Mar 05 2014 *)
    Select[Range[1000], PrimeQ[2^# - 5] && PrimeQ[5 2^# - 1] &] (* Vincenzo Librandi, May 17 2015 *)
  • PARI
    isok(n) = isprime(2^n - 5) && isprime(5*2^n - 1); \\ Michel Marcus, Mar 04 2014
    

A379020 Numbers k such that 2^k - 25 is prime.

Original entry on oeis.org

5, 7, 9, 13, 33, 37, 57, 63, 93, 127, 129, 165, 189, 369, 717, 3079, 3087, 3925, 6709, 7633, 18001, 21961, 55557, 60415, 63589, 69463, 75949, 98265, 212295, 416773, 647545, 824325, 1538959, 2020893, 2421175
Offset: 1

Views

Author

Boyan Hu, Dec 13 2024

Keywords

Comments

Except for a(1), all terms are congruent to 1 or 3 mod 6.
a(36) > 3400000. - Boyan Hu, Jun 16 2025

Examples

			7 is in the sequence because 2^7-25=103 is prime.
8 is not in the sequence because 2^8-25=231=3*7*11 is not prime.
		

Crossrefs

Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), A059609 (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), A356826 (d=29).
Except for a(1), subsequence of A047241.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 2^n - 25 ], Print[ n ] ], { n, 1, 15000} ]
  • PARI
    is(n)=ispseudoprime(2^n-25)

Extensions

a(1)=5 inserted by Max Alekseyev, May 28 2025

A015796 Numbers k such that phi(k) + 5 | sigma(k).

Original entry on oeis.org

4, 10, 32, 60, 88, 688, 2544, 3424, 12200, 62848, 777984, 1037824, 16734208, 67022848, 8625555968, 51537444864, 1099500617728
Offset: 1

Views

Author

Keywords

Comments

a(18) <= 17592142004224. In general, if 2^k-11 is prime (A096817) then 2^(k-2)*3*(2^k-11) is a term for k > 3. Moreover, if 2^k-21 is prime (A096820) then 2^(k-2)*(2^k-21) is a term for k > 4. - Giovanni Resta, Sep 09 2019

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],
    Divisible[DivisorSigma[1, #], EulerPhi[#] + 5] &] (* David Nacin, Feb 28 2012 *)

Extensions

More terms from Jud McCranie, Dec 26 1999
Offset corrected and a(15)-a(16) from Donovan Johnson, Feb 28 2012
a(17) from Giovanni Resta, Sep 09 2019
Previous Showing 11-15 of 15 results.