cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A259384 Palindromic numbers in bases 6 and 8 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 154, 178, 203, 5001, 7409, 315721, 567434, 1032507, 46823602, 56939099, 84572293, 119204743, 1420737297, 1830945641, 2115191225, 3286138051, 3292861699, 4061216947, 8094406311, 43253138565, 80375377033, 88574916241, 108218625313, 116606986537, 116755331881, 166787896538, 186431605610, 318743407660, 396619220597, 1756866976011, 4920262093249, 11760498311914, 15804478291811, 15813860880803, 24722285628901, 33004205249575, 55584258482529, 371039856325905, 401205063672537, 516268720555889
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			178 is in the sequence because 178_10 = 262_8 = 454_6.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 6], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=6; b2=8; lst={}; Do[d1=IntegerDigits[n,b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A029953 and A029803.

A259385 Palindromic numbers in bases 2 and 9 written in base 10.

Original entry on oeis.org

0, 1, 3, 5, 7, 127, 255, 273, 455, 6643, 17057, 19433, 19929, 42405, 1245161, 1405397, 1786971, 2122113, 3519339, 4210945, 67472641, 90352181, 133638015, 134978817, 271114881, 6080408749, 11022828069, 24523959661, 25636651261, 25726334461, 28829406059, 1030890430479, 1032991588623, 1085079274815, 1616662113341
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			273 is in the sequence because 273_10 = 333_9 = 100010001_2.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 2], AppendTo[lst, pp]; Print[pp]]; k++]; lst
  • Python
    def nextpal(n, base): # m is the first palindrome successor of n in base base
        m, pl = n+1, 0
        while m > 0:
            m, pl = m//base, pl+1
        if n+1 == base**pl:
            pl = pl+1
        n = n//(base**(pl//2))+1
        m, n = n, n//(base**(pl%2))
        while n > 0:
            m, n = m*base+n%base, n//base
        return m
    n, a2, a9 = 0, 0, 0
    while n <= 30:
        if a2 < a9:
            a2 = nextpal(a2,2)
        elif a9 < a2:
            a9 = nextpal(a9, 9)
        else: # a2 == a9
            print(a2, end=",")
            a2, a9, n = nextpal(a2,2), nextpal(a9,9), n+1 # A.H.M. Smeets, Jun 03 2019

Formula

Intersection of A006995 and A029955.

A259386 Palindromic numbers in bases 3 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 20, 40, 80, 82, 91, 100, 164, 173, 182, 328, 364, 400, 656, 692, 728, 730, 820, 910, 1460, 1550, 1640, 2920, 3280, 3640, 5840, 6200, 6560, 6562, 6643, 6724, 7300, 7381, 7462, 8038, 8119, 8200, 13124, 13205, 13286, 13862, 13943, 14024, 14600, 14681, 14762, 26248, 26572, 26896, 29200, 29524, 29848, 32152, 32476, 32800, 52496, 52820, 53144, 55448, 55772, 56096, 58400, 58724, 59048, 59050, 59860, 60670, 65620, 66430, 67240, 72190, 73000, 73810
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			40 is in the sequence because 40_10 = 44_9 = 1111_3.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=3; b2=9; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 80000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A014190 and A029955.

A259390 Palindromic numbers in bases 7 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 40, 50, 100, 164, 200, 264, 300, 328, 400, 2000, 3550, 8200, 10252, 14510, 14762, 22800, 45600, 164900, 201720, 400200, 532900, 555013, 738100, 2756120, 2913368, 3344352, 3501600, 4084000, 12990350, 22674550, 194062432, 1684866370, 2225211080, 13575144288, 15127811455, 20404027400, 20537111057, 22668403353, 30862471355, 83714515310, 84668107250, 796259955485, 1202029647736, 2088800185930, 20268849562000
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 17 2015

Keywords

Examples

			264 is in the sequence because 264_10 = 323_9 = 525_7.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 7], AppendTo[lst, pp]; Print[pp]]; k++]; lst

Formula

Intersection of A029954 and A029955.

A259381 Palindromic numbers in bases 3 and 8 written in base 10.

Original entry on oeis.org

0, 1, 2, 4, 121, 130, 203, 316, 8578, 9490, 17492, 944035, 1141652, 1276916, 1554173, 58961443, 67470916, 4099065139, 5691134677, 81452592329, 81473867465, 419572845958, 21056462595764, 363376288168081
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			121 is in the sequence because 121_10 = 171_8 = 11111_3.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=3; b2=8; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A014190 and A029803.

A259383 Palindromic numbers in bases 5 and 8 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 18, 36, 186, 438, 2268, 2709, 11898, 18076, 151596, 228222, 563786, 5359842, 32285433, 257161401, 551366532, 621319212, 716064597, 2459962002, 5018349804, 5067084204, 7300948726, 42360367356, 139853034114, 176616961826, 469606524278, 669367713609, 1274936571666, 1284108810066, 5809320306961, 8866678870082, 11073162740322, 14952142559323, 325005646077513
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			186 is in the sequence because 186_10 = 272_8 = 1221_5.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 5], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=5; b2=8; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A029952 and A029803.

A259387 Palindromic numbers in bases 4 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 255, 273, 373, 546, 2550, 2730, 2910, 16319, 23205, 54215, 1181729, 1898445, 2576758, 3027758, 3080174, 4210945, 9971750, 163490790, 2299011170, 6852736153, 6899910553, 160142137430, 174913133450, 204283593150, 902465909895, 1014966912315, 2292918574418, 9295288254930, 11356994802010, 11372760382810, 38244097345762
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			273 is in the sequence because 273_10 = 333_9 = 10101_4.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 4], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=4; b2=9; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A014192 and A029955.

A259388 Palindromic numbers in bases 5 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 109, 246, 282, 564, 701, 22386, 32152, 41667, 47653, 48553, 1142597, 1313858, 1412768, 1677684, 12607012902, 19671459008, 20134447808, 24208576998, 24863844904, 26358878059
Offset: 1

Views

Author

Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			246 is in the sequence because 246_10 = 303_9 = 1441_5.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 5], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=5; b2=9; lst={};Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A029952 and A029955.

A259389 Palindromic numbers in bases 6 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 80, 154, 191, 209, 910, 3740, 5740, 8281, 16562, 16814, 2295481, 2300665, 2350165, 2439445, 2488945, 2494129, 2515513, 7971580, 48307924, 61281793, 69432517, 123427622, 124091822, 124443290, 55854298990, 184314116750, 185794441250, 187195815770, 327925630018, 7264479038060, 27832011695551
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 17 2015

Keywords

Examples

			209 is in the sequence because 209_10 = 252_9 = 545_6.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 6], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=6; b2=9; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 1000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A029953 and A029955.

A279092 Numbers that are nontrivially palindromic in two or more consecutive integer bases.

Original entry on oeis.org

10, 46, 67, 92, 98, 104, 121, 130, 135, 154, 178, 185, 191, 227, 232, 235, 277, 282, 292, 300, 326, 343, 373, 379, 410, 436, 446, 454, 455, 464, 483, 497, 543, 555, 562, 565, 631, 640, 646, 647, 651, 656, 676, 704, 738, 745, 781, 787, 797, 809, 835, 858, 862
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 31 2017

Keywords

Comments

For any integer b > 1, the base-b expansion of any number k < b will be a one-digit number, and will thus be trivially palindromic.
From Matej Veselovac, Sep 26 2019: (Start)
All terms of the sequence have 3 or more digits in at least one of the consecutive palindromic bases. The only term that has 2,3 digits exactly in the consecutive palindromic bases, is the first term a(1) = 10 = (1,0){10} = (2,2){4} = (1,0,1)_{3}, which is palindromic in bases 4,3 and has 2,3 digits in those bases, respectively.
If a term of the sequence has d digits in the smallest of the palindromic bases, then d must be odd. This is because an even length palindrome in base b, is divisible by b+1, and hence can't be palindromic in the base b+1 as it will end in 0. This implies that if a term has an equal number of digits in all bases, that number must be odd.
All terms that have exactly d = 3 digits in consecutive palindromic number bases b,b-1,... are given by the following two families (if and only if relation):
1. n = (x+1, y+4, x+1)_{b = 5+x+y} = (x+1)(5+x+y)^2+(y+4)(5+x+y)^1+(x+1)
2. n = (x+2, 5, x+2)_{b = x+6} = (x+2)(x+6)^2+5(6+x)^1+(x+2)
Where x, y = 0,1,2,3,... go over all nonnegative integers, where (a_1, a_2, a_3) represents digits in base {b} in terms of x, y; and where the RHS is the decimal expansion.
There are similar families for every subsequence of terms having exactly d digits in all bases, but they get much more complex for d >= 5. The d = 5 case is included at the link "Special linear Diophantine system - is it solvable in general?".
Specifically, every subsequence of terms with exactly d digits in all of the consecutive palindromic bases, is infinite. This is proven by finding the following subsequence of such subsequences:
We can construct a subsequence yielding infinitely many terms for every digit case d. For example, one such family is given by (b-1,0,b-1,0,...,0,b-1)_{b}, by alternating "b-1" and "0" digits in base b, and will be nontrivially palindromic in base b+1 as well, for all b > binomial(2k, k), where d=2k+1 is an odd number of digits, for every natural number k. That is, in the decimal expansion, these terms are equal to (b^(2k+2)-1)/(b+1), giving infinitely many terms for every k, that have d=2k+1 digits in palindromic bases b, b+1, for every b > binomial(2k, k).
In contrast, if the number of digits is not equal in all of the consecutive palindromic bases, then every subsequence that is bounded by a maximal number of d digits allowed in the consecutive palindromic bases, seems to be finite.
That is, we can say "almost all" terms in this sequence belong to the case of having an equal number of digits in all consecutive palindromic bases. The remaining terms, that do not have an equal number of digits in all consecutive palindromic bases, are given in A327810.
(End).

Examples

			10 is in the sequence because the bases in which 10 is nontrivially palindromic include 3 and 4: 10 = 101_3 = 22_4.
178 is in the sequence because the bases in which 178 is nontrivially palindromic include 6, 7, and 8: 178 = 454_6 = 343_7 = 262_8.
252 is nontrivially palindromic in 11 integer bases (2002_5 = 252_10 = ee_17 = cc_20 = 99_27 = 77_35 = 66_41 = 44_62 = 33_83 = 22_125 = 11_251), but none of these bases are consecutive integers, so 252 is not in the sequence.
		

Crossrefs

Cf. A002113 (palindromes in base 10), A048268 (smallest palindrome greater than n in bases n and n+1).
Numbers that are palindromic in bases k and k+1: A060792 (k=2), A097928 (k=3), A097929 (k=4), A097930 (k=5), A097931 (k=6), A099145 (k=7), A099146 (k=8), A029965 (k=9), A029966 (k=11).
Cf. A279093 (analogous with three or more consecutive integer bases).
Cf. A327810 (subsequence with different number of digits in those bases).

Programs

  • Mathematica
    palQ[n_Integer, base_Integer] := Boole@ Block[{}, Reverse[idn = IntegerDigits[n, base]] == idn]; fQ[n_] := Block[{b = 2}, While[b < n && {palQ[n, b], palQ[n, b + 1]} != {1, 1}, b++]; b < n]; Select[ Range@1000, fQ] (* Robert G. Wilson v, Jan 31 2017 *)
    c[b1_, d_] := Pick[FromDigits[#, b1 + 1] & /@ #, PalindromeQ[#] && Length[#] > 1 & /@ #] &@ IntegerDigits[ FromDigits[#, b1] & /@ (Flatten[Outer[List, Range[1, b1 - 1], Sequence @@ ConstantArray[Range[0, b1 - 1], d + 0]], d + 0][[All, Join[Range[d + 1], Reverse[Range[1, d + 0]]]]]), b1 + 1]; a[L_] := DeleteDuplicates[Sort[Select[Flatten[Table[c[b1, d], {d, 1, Ceiling[Log[2, L]/2] + 1}, {b1, 2, Ceiling[L ^(1/(2 d))]}]], # Matej Veselovac, Sep 28 2019 *)
Previous Showing 11-20 of 21 results. Next