cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A121913 a(n) = 2^(n*(2*n+3)) = 2^A014106(n).

Original entry on oeis.org

1, 32, 16384, 134217728, 17592186044416, 36893488147419103232, 1237940039285380274899124224, 664613997892457936451903530140172288, 5708990770823839524233143877797980545530986496
Offset: 0

Views

Author

Philippe Deléham, Sep 02 2006

Keywords

Comments

Apparently the Hankel transform of A098441 = [1, 1, 33, 97, 1729, 8001, 105441, 627873, ...].
Hankel transform of A098430. - Philippe Deléham, Mar 01 2009

Examples

			Det(1) = 1; Det(1,1; 1,33) = 32; Det(1,1,33; 1,33,97; 33,97,1729) = 16384; ...
		

Crossrefs

Programs

A385639 a(n) = Sum_{k=0..n} binomial(4*n+1,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 7, 69, 748, 8485, 98847, 1171884, 14066808, 170421669, 2079531685, 25520363869, 314653207128, 3894577133356, 48362609654548, 602248101550920, 7517853111444528, 94044248726758821, 1178641094940246897, 14796230460187072719, 186022053254555479500, 2341837809478393341885
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[4*n+1, k]*Binomial[2*n-k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n+1, k)*binomial(2*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(4*n+1)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^(2*n+1) * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n+1,k) * binomial(3*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(3*n-k,n-k).
a(n) = binomial(2*n, n)*hypergeom([-1-4*n, -n], [-2*n], -1). - Stefano Spezia, Aug 07 2025
a(n) ~ sqrt((187 - 3*sqrt(17)) / (17*Pi*n)) * (51*sqrt(17) - 107)^n / 2^(3*n + 3/2). - Vaclav Kotesovec, Aug 07 2025

A358114 a(n) = [x^n] (16*x*(32*x - 3) + 1)^(-1/2).

Original entry on oeis.org

1, 24, 608, 16128, 443904, 12570624, 363708416, 10694295552, 318301929472, 9562594738176, 289380790960128, 8807948507676672, 269349580129173504, 8268747111256817664, 254668380196759928832, 7865254221563736096768, 243493498808268962660352, 7553805204299934842486784
Offset: 0

Views

Author

Peter Luschny, Nov 12 2022

Keywords

Crossrefs

Cf. A098430.

Programs

  • Maple
    ogf := (16*x*(32*x - 3) + 1)^(-1/2): ser := series(ogf, x, 20):
    seq(coeff(ser, x, n), n = 0..17);
  • Mathematica
    a[n_] := 16^n * HypergeometricPFQ[{1/2, -n}, {1}, -1]; Array[a, 18, 0] (* Amiram Eldar, Nov 12 2022 *)

Formula

a(n) = 16^n * hypergeom([1/2, -n], [1], -1).
D-finite with recurrence a(n) = (24*(2*n - 1)*a(n - 1) - 512*(n - 1)*a(n - 2)) / n for n >= 2.
a(n) ~ 2^(5*n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 12 2022
a(n) = 4^n*A098410(n). - R. J. Mathar, Jan 25 2023
Previous Showing 11-13 of 13 results.