cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 215 results. Next

A251239 Indices of prime numbers in A098550.

Original entry on oeis.org

2, 3, 9, 15, 22, 23, 30, 43, 51, 61, 62, 79, 87, 88, 101, 114, 127, 132, 142, 153, 158, 167, 175, 194, 204, 215, 222, 233, 238, 247, 274, 283, 296, 301, 324, 329, 338, 355, 364, 375, 386, 393, 414, 423, 430, 435, 452, 479, 490, 497, 506, 523, 528, 541, 550
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 02 2014

Keywords

Comments

It is conjectured that every prime appears in A098550, and if so then A098550(a(n)) = A000040(n). [Comment edited by N. J. A. Sloane, Dec 15 2014] [It is now known that every prime appears in A098550, although it is not known that they appear in their right order. - N. J. A. Sloane, Dec 25 2014]
A010051(A098550(a(n))) = 1; A049084(A098550(a(n))) > 0.
Conjecture: a(n) = A251541(n) + 2 for n > 4. - Reinhard Zumkeller, Dec 16 2014
A253049(n) = A098550(a(n)+1). - Reinhard Zumkeller, Dec 29 2014

Crossrefs

This is a subsequence of A251391 and A251241,

Programs

  • Haskell
    a251239 n = a251239_list !! (n-1)
    a251239_list = filter ((== 1) . a010051' . a098550) [1..]
  • Mathematica
    a098550[lst_List] :=
    Block[{k = 4},
      While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 ||
        MemberQ[lst, k], k++]; Append[lst, k]];
    a251239[n_] :=
    Flatten@Position[Nest[a098550, {1, 2, 3}, n], Integer?PrimeQ]; a251239[550] (* _Michael De Vlieger, Dec 23 2014, based on Robert G. Wilson v at A098550 *)

A098551 Inverse of A098550.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 15, 6, 5, 16, 22, 12, 23, 8, 7, 14, 30, 31, 43, 18, 17, 20, 51, 33, 11, 25, 19, 27, 61, 39, 62, 29, 24, 35, 13, 37, 79, 41, 21, 48, 87, 44, 88, 46, 26, 56, 101, 52, 40, 50, 28, 54, 114, 69, 34, 58, 47, 63, 127, 71, 132, 60, 42, 65, 36, 73, 142, 67, 49, 80, 153
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 14 2004

Keywords

Comments

Now known to be a permutation of the natural numbers: see the 2015 article by Applegate, Havermann, Selcoe, Shevelev, Sloane, and Zumkeller.

Crossrefs

Cf. A249943 (partial maxima).

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a098551 = (+ 1) . fromJust . (`elemIndex` a098550_list)
    -- Reinhard Zumkeller, Nov 21 2014
  • Mathematica
    f[lst_List] := Block[{k = 4}, While[ GCD[ lst[[-2]], k] == 1 || GCD[ lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; Table[ Position[ Nest[ f, {1, 2, 3}, 120], n], {n, 71}] // Flatten (* Robert G. Wilson v, Nov 21 2014 *)

Formula

A098553(n) = a(a(n)).

A251416 a(n) = smallest number not in {A098550(1), A098550(2), ..., A098550(n)}.

Original entry on oeis.org

2, 3, 4, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 10, 11, 11, 11, 11, 11, 11, 13, 17, 17, 17, 17, 17, 17, 17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 31
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2014

Keywords

Comments

a(n) = smallest missing number in A098550 once we have found A098550(n).
Bradley Klee conjectures that after a(30)=18, all further terms are primes, that every prime appears, and the primes appear in increasing order.

References

  • Bradley Klee, Posting to Sequence Fans Mailing List, Dec 03 2014

Crossrefs

Cf. A098550, A251415. See A251417 for lengths of runs.
Cf. A251595 (distinct terms).

Programs

  • Haskell
    import Data.List (delete)
    a251416 n = a251416_list !! (n-1)
    a251416_list = 2 : 3 : f 2 3 [4..] where
       f u v ws = h ws where
         h (x:xs) = if gcd x u > 1 && gcd x v == 1
                       then (head ws) : f v x (delete x ws) else h xs
    -- Reinhard Zumkeller, Dec 05 2014
  • Maple
    # This produces the first 100 terms. Uses b1 = list of terms in A098550, from b-file
    b2:={$3..5000}:
    b3:=[2]:
    for i from 2 to 100 do
    b2:=remove('x->x=b1[i]',b2):
    b3:=[op(b3),b2[1]];
    od:
    b3;
  • Mathematica
    terms = 100;
    f[lst_List] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
    A098550 = Nest[f, {1, 2, 3}, terms-3];
    a[1] = 2;
    a[n_] := a[n] = For[k = a[n - 1], True, k++, If[FreeQ[A098550[[1 ;; n]], k], Return[k]]];
    Array[a, terms] (* Jean-François Alcover, Aug 01 2018, after Robert G. Wilson v *)

Formula

a(n) = Min{A251546(n), A251549(n)}. - Reinhard Zumkeller, Dec 19 2014

A251546 a(n) = smallest even number not in {A098550(1), A098550(2), ..., A098550(n)}.

Original entry on oeis.org

2, 4, 4, 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 24, 24, 30, 30, 30, 30, 30, 30, 38, 38, 40, 40, 40, 40, 40, 40, 40, 46, 46, 46, 46, 46, 46, 46, 46, 54, 54, 54
Offset: 1

Views

Author

N. J. A. Sloane, Dec 18 2014

Keywords

Comments

A251416(n) = Min{a(n), A251549(n)}. - Reinhard Zumkeller, Dec 19 2014

Crossrefs

Programs

  • Haskell
    import Data.List ((\\))
    a251546 n = head $ [2, 4 ..] \\ filter even (take n a098550_list)
    -- Reinhard Zumkeller, Dec 19 2014
  • Mathematica
    terms = 100;
    f[lst_List] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
    A098550 = Nest[f, {1, 2, 3}, terms - 3];
    a[1] = 2;
    a[n_] := a[n] = For[k = a[n-1], True, k += 2, If[FreeQ[A098550[[1;;n]], k], Return[k]]];
    Array[a, terms] (* Jean-François Alcover, Aug 01 2018, after Robert G. Wilson v *)

A251544 List of values of A098550(n+2) for those n for which A098550(n) is a prime.

Original entry on oeis.org

4, 9, 25, 21, 33, 26, 85, 95, 115, 58, 93, 111, 82, 129, 329, 265, 177, 427, 335, 213, 365, 237, 581, 267, 679, 505, 309, 321, 545, 565, 381, 655, 411, 973, 1043, 755, 785, 1141, 835, 519, 895, 1267, 1337, 579, 985, 597, 633, 1115, 1135, 687, 699, 1673, 723, 753
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Dec 16 2014

Keywords

Comments

For n > 4: third column in A251637. - Reinhard Zumkeller, Dec 16 2014

Crossrefs

Cf. A098550, A251542 (another version). See A251545 for the sorted values.
Cf. A251637.

Programs

  • Mathematica
    max = 600;
    f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
    A098550 = Nest[f, {1, 2, 3}, max - 3];
    sel = Select[Transpose[{Range[max], A098550}], PrimeQ[#[[2]]]&][[All,1]]+2;
    A098550[[sel]] (* Jean-François Alcover, Sep 05 2018, after Robert G. Wilson v in A098550 *)

A251542 List of values A098550(n+2)/A098550(n) for those n for which A098550(n) is a prime.

Original entry on oeis.org

2, 3, 5, 3, 3, 2, 5, 5, 5, 2, 3, 3, 2, 3, 7, 5, 3, 7, 5, 3, 5, 3, 7, 3, 7, 5, 3, 3, 5, 5, 3, 5, 3, 7, 7, 5, 5, 7, 5, 3, 5, 7, 7, 3, 5, 3, 3, 5, 5, 3, 3, 7, 3, 3, 5, 3, 5, 7, 3, 5, 7, 3, 3, 5, 11, 3, 5, 5, 5, 3, 5, 5, 5, 5, 7, 3, 7, 5, 5, 7, 3, 5, 5, 3, 3, 5, 3, 7, 7, 5
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Dec 15 2014

Keywords

Comments

a(n) <= 17 for n <= 250000 (see A251543).
For n > 4: third column in A251715. - Reinhard Zumkeller, Dec 16 2014
a(n) <= 19 for n <= 10^6. - Chai Wah Wu, Dec 16 2014

Examples

			A098550(n) for n= 1..11 is 1,2,3,4,9,8,15,14,5,6,25. Each time you see a prime, divide the term two steps ahead by that prime. The result is 4/2=2, 9/3=3, 25/5=5,...
		

Crossrefs

Cf. A098550, A251543. See A251544 for the actual values of A098550(n+2).
Cf. A251715.

Programs

  • Haskell
    a251542 n = a251542_list !! (n-1)
    a251542_list = [div u v | (u, v) <- zip(drop 2 a098550_list) a098550_list,
                              a010051' v == 1]
    -- Reinhard Zumkeller, Mar 11 2015
  • Mathematica
    max = 1200;
    f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
    A098550 = Nest[f, {1, 2, 3}, max - 3];
    sel = Select[Transpose[{Range[max], A098550}], PrimeQ[#[[2]]]&][[All,1]]+2;
    A098550[[sel]]/A098550[[sel - 2]] (* Jean-François Alcover, Sep 05 2018, after Robert G. Wilson v in A098550 *)

A251604 A Zumkeller-type sequence (cf. A098550): a(n) = n if n <= 3, otherwise the smallest number not occurring earlier having at least one common factor with a(n-2)+a(n-1), but none with a(n-1).

Original entry on oeis.org

1, 2, 3, 5, 4, 9, 13, 6, 19, 10, 29, 12, 41, 53, 8, 61, 15, 14, 87, 101, 16, 21, 37, 18, 11, 58, 23, 24, 47, 71, 20, 7, 27, 17, 22, 39, 122, 35, 157, 26, 33, 59, 28, 45, 73, 30, 103, 38, 51, 89, 25, 32, 57, 178, 55, 233, 34, 63, 97, 36, 49, 40, 267, 307, 42
Offset: 1

Views

Author

Vladimir Shevelev, Dec 13 2014

Keywords

Comments

Conjectured to be a permutation of the positive integers.
See also A255972 for this conjecture. - Reinhard Zumkeller, Mar 12 2015

Crossrefs

Cf. A098550.
Cf. A255972.

Programs

  • Haskell
    import Data.List (delete)
    a251604 n = a251604_list !! (n-1)
    a251604_list = 1 : 2 : 3 : f 2 3 [4..] where
       f u v ws = g ws where
         g (x:xs) = if gcd x (u + v) > 1 && gcd x v == 1
                       then x : f v x (delete x ws) else g xs
    -- Reinhard Zumkeller, Mar 12 2015
  • Mathematica
    a[n_] := a[n] = If[n <= 3, n, For[k = 1, True, k++, If[FreeQ[Array[a, n-1], k], If[!CoprimeQ[k, a[n-2]+a[n-1]] && CoprimeQ[k, a[n-1]], Return[k]]]]];
    Array[a, 65] (* Jean-François Alcover, Jul 31 2018 *)

Extensions

More terms from Peter J. C. Moses, Dec 13 2014

A249943 a(n) = smallest k such that the numbers 1..n appear among A098550(1), ..., A098550(k), or a(n) = 0 if there is no such k.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 15, 15, 15, 16, 22, 22, 23, 23, 23, 23, 30, 31, 43, 43, 43, 43, 51, 51, 51, 51, 51, 51, 61, 61, 62, 62, 62, 62, 62, 62, 79, 79, 79, 79, 87, 87, 88, 88, 88, 88, 101
Offset: 1

Views

Author

Vladimir Shevelev, Dec 04 2014

Keywords

Comments

The conjecture that all terms are positive is equivalent to the known conjecture that A098550 is a permutation of the positive integers.
Partial maxima of A098551: a(n) = max{a(n-1),A098551(n)} for n > 1. - Reinhard Zumkeller, Dec 06 2014

Examples

			Let n=6. Since A098550(9)=5 and A098550(10)=6, a(6)=10. - Corrected by _David Applegate_, Dec 08 2014
		

Crossrefs

Cf. A251620 (duplicates removed), A251621 (run lengths).

Programs

  • Haskell
    a249943 n = a249943_list !! (n-1)
    a249943_list = scanl1 max $ map a098551 [1..]
    -- Reinhard Zumkeller, Dec 06 2014
  • Mathematica
    f[lst_List] := Block[{k=4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k]>1 || MemberQ[lst, k], k++]; Append[lst, k]]; A098550 = Nest[f, {1, 2, 3}, 100]; runningMax := Rest[FoldList[Max, -Infinity, #]]&; runningMax[Take[Ordering[A098550], NestWhile[#+1&, 1, MemberQ[A098550, #]&]-1]] (* Jean-François Alcover, Dec 05 2014, after Robert G. Wilson v and Peter J. C. Moses *)

Formula

The author conjectures that a(n)/n <= a(19)/19 = 43/19. Peter J. C. Moses verified that the strict inequality holds for 19 < n <= 1.1*10^5. - Vladimir Shevelev, Dec 06 2014

A251237 Indices of even numbers in A098550.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 27, 29, 31, 33, 35, 37, 39, 41, 44, 46, 48, 50, 52, 54, 56, 58, 60, 63, 65, 67, 69, 71, 73, 75, 77, 80, 82, 84, 86, 89, 91, 93, 95, 97, 99, 102, 104, 106, 108, 110, 112, 115, 117, 119, 121, 123, 125, 128, 130, 133, 135
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 02 2014

Keywords

Comments

A098550(a(n)) mod 2 = 0;
a(n+1) > a(n) + 1;
there are infinitely many even terms in A098550, for proof: see comment #4 in A098550.

Crossrefs

First row of array A251716.

Programs

  • Haskell
    a251237 n = a251237_list !! (n-1)
    a251237_list = filter (even . a098550) [1..]
  • Mathematica
    f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
    Position[Nest[f, {1, 2, 3}, 140], ?EvenQ] // Flatten (* _Jean-François Alcover, Oct 01 2018, after Robert G. Wilson v in A098550 *)

A251241 Indices of prime powers in A098550.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 14, 15, 19, 22, 23, 29, 30, 40, 43, 51, 57, 61, 62, 65, 79, 87, 88, 94, 101, 114, 124, 127, 132, 137, 142, 153, 158, 167, 171, 175, 187, 194, 204, 215, 222, 233, 238, 247, 269, 273, 274, 277, 283, 296, 301, 313, 324, 329, 338, 355
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 02 2014

Keywords

Comments

A010055(A098550(a(n))) = 1; for n > 0: A100995(A098550(a(n))) > 0;
A098550(a(n)) = A000961(n).

Crossrefs

Cf. A098550, A000961, A010055, A100995, subsequences: A251239 and A251240.

Programs

  • Haskell
    a251241 n = a251241_list !! (n-1)
    a251241_list = filter ((== 1) . a010055 . a098550) [1..]
Showing 1-10 of 215 results. Next