cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A098553 A098551(A098551(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 16, 7, 10, 9, 14, 20, 12, 51, 6, 15, 8, 39, 62, 88, 31, 30, 18, 28, 24, 22, 11, 43, 19, 132, 21, 60, 61, 33, 13, 23, 79, 167, 87, 17, 52, 59, 46, 91, 56, 25, 58, 215, 54, 48, 50, 27, 69, 123, 49, 35, 63, 101, 42, 274, 153, 145, 71, 44, 36, 37, 158, 151, 142, 40
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 14 2004

Keywords

Comments

Integer permutation with inverse A098552;
A098550(a(n)) = a(A098550(n)) = A098551(n).

Crossrefs

Programs

A098550 The Yellowstone permutation: a(n) = n if n <= 3, otherwise the smallest number not occurring earlier having at least one common factor with a(n-2), but none with a(n-1).

Original entry on oeis.org

1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7, 10, 21, 20, 27, 22, 39, 11, 13, 33, 26, 45, 28, 51, 32, 17, 18, 85, 24, 55, 34, 65, 36, 91, 30, 49, 38, 63, 19, 42, 95, 44, 57, 40, 69, 50, 23, 48, 115, 52, 75, 46, 81, 56, 87, 62, 29, 31, 58, 93, 64, 99, 68, 77, 54, 119, 60
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 14 2004

Keywords

Comments

For n > 3, gcd(a(n), a(n-1)) = 1 and gcd(a(n), a(n-2)) > 1. (This is just a restatement of the definition.)
This is now known to be a permutation of the natural numbers: see the 2015 article by Applegate, Havermann, Selcoe, Shevelev, Sloane, and Zumkeller.
From N. J. A. Sloane, Nov 28 2014: (Start)
Some of the known properties (but see the above-mentioned article for a fuller treatment):
1. The sequence is infinite. Proof: We can always take a(n) = a(n-2)*p, where p is a prime that is larger than any prime dividing a(1), ..., a(n-1). QED
2. At least one-third of the terms are composite. Proof: The sequence cannot contain three consecutive primes. So at least one term in three is composite. QED
3. For any prime p, there is a term that is divisible by p. Proof: Suppose not. (i) No prime q > p can divide any term. For if a(n)=kq is the first multiple of q to appear, then we could have used kp < kq instead, a contradiction. So every term a(n) is a product of primes < p. (ii) Choose N such that a(n) > p^2 for all n > N. For n > N, let a(n)=bg, a(n+1)=c, a(n+2)=dg, where g=gcd(a(n),a(n+2)). Let q be the largest prime factor of g. We know q < p, so qp < p^2 < dg, so we could have used qp instead of dg, a contradiction. QED
3a. Let a(n_p) be the first term that is divisible by p (this is A251541). Then a(n_p) = q*p where q is a prime less than p. If p < r are primes then n_p < n_r. Proof: Immediate consequences of the definition.
4. (From David Applegate, Nov 27 2014) There are infinitely many even terms. Proof:
Suppose not. Then let 2x be the maximum even entry. Because the sequence is infinite, there exists an N such that for any n > N, a(n) is odd, and a(n) > x^2.
In addition, there must be some n > N such that a(n) < a(n+2). For that n, let g = gcd(a(n),a(n+2)), a(n) = bg, a(n+1)=c, a(n+2)=dg, with all of b,c,d,g relatively prime, and odd.
Since dg > bg, d > b >= 1, so d >= 3. Also, g >= 3.
Since a(n) = bg > x^2, one of b or g is > x.
Case 1: b > x. Then 2b > 2x, so 2b has not yet occurred in the sequence. And gcd(bg,2b)=b > x > 1, gcd(2b,c)=1, and since g >= 3, 2b < bg < dg. So a(n+2) should have been 2b instead of dg.
Case 2: g > x. Then 2g > 2x, so 2g has not yet occurred in the sequence. And gcd(bg,2g)=g > 1, gcd(2g,c)=1, and since d >= 3, 2g < dg. So a(n+2) should have been 2g instead of dg.
In either case, we derive a contradiction. QED
Conjectures:
5. For any prime p > 97, the first time we see p, it is in the subsequence a(n) = 2b, a(n+2) = 2p, a(n+4) = p for some n, b, where n is about 2.14*p and gcd(b,p)=1.
6. The value of |{k=1,..,n: a(k)<=k}|/n tends to 1/2. - Jon Perry, Nov 22 2014 [Comment edited by N. J. A. Sloane, Nov 23 2014 and Dec 26 2014]
7. Based on the first 250000 terms, I conjectured on Nov 30 2014 that a(n)/n <= (Pi/2)*log n.
8. The primes in the sequence appear in their natural order. This conjecture is very plausible but as yet there is no proof. - N. J. A. Sloane, Jan 29 2015
(End)
The only fixed points seem to be {1, 2, 3, 4, 12, 50, 86} - see A251411. Checked up to n=10^4. - L. Edson Jeffery, Nov 30 2014. No further terms up to 10^5 - M. F. Hasler, Dec 01 2014; up to 250000 - Reinhard Zumkeller; up to 300000 (see graph) - Hans Havermann, Dec 01 2014; up to 10^6 - Chai Wah Wu, Dec 06 2014; up to 10^8 - David Applegate, Dec 08 2014.
From N. J. A. Sloane, Dec 04 2014: (Start)
The first 250000 points lie on about 8 roughly straight lines, whose slopes are approximately 0.467, 0.957, 1.15, 1.43, 2.40, 3.38, 5.25 and 6.20.
The first six lines seem well-established, but the two lines with highest slope at present are rather sparse. Presumably as the number of points increases, there will be more and more lines of ever-increasing slopes.
These lines can be seen in the Havermann link. See the "slopes" link for a list of the first 250000 terms sorted according to slope (the four columns in the table give n, a(n), the slope a(n)/n, and the number of divisors of a(n), respectively).
The primes (with two divisors) all lie on the lowest line, and the lines of slopes 1.43 and higher essentially consist of the products of two primes (with four divisors).
(End)
The eight roughly straight lines mentioned above are actually curves. A good fit for the "line" with slope ~= 1.15 is a(n)~=n(1+1.0/log(n/24.2)), and a good fit for the other "lines" is a(n)~= (c/2)*n(1-0.5/log(n/3.67)), for c = 1,2,3,5,7,11,13. The first of these curves consists of most of the odd terms in the sequence. The second family consists of the primes (c=1), even terms (c=2), and c*prime (c=3,5,7,11,13,...). This functional form for the fit is motivated by the observed pattern (after the first 204 terms) of alternating even and odd terms, except for the sequence pattern 2*p, odd, p, even, q*p when reaching a prime (with q a prime < p). - Jon E. Schoenfield and David Applegate, Dec 15 2014
For a generalization, see the sequence of monomials of primes in the comment in A247225. - Vladimir Shevelev, Jan 19 2015
From Vladimir Shevelev, Feb 24 2015: (Start)
Let P be prime. Denote by S_P*P the first multiple of P appearing in the sequence. Then
1) For P >= 5, S_P is prime.
Indeed, let
a(n-2)=v, a(n-1)=w, a(n)=S_P*P. (*)
Note that gcd(v,P)=1. Therefore, by the definition of the sequence, S_P*P should be the smallest number such that gcd(v,S_P) > 1.
So S_P is the smallest prime factor of v.
2) The first multiples of all primes appear in the natural order.
Suppose not. Then there is a pair of primes P < Q such that S_Q*Q appears earlier than S_P*P. Let
a(m-2)=v_1, a(m-1)=w_1, a(m)=S_Q*Q. (**)
Then, as in (*), S_Q is the smallest prime factor of v_1. But this does not depend on Q. So S_Q*P is a smaller candidate in (**), a contradiction.
3) S_P < P.
Indeed, from (*) it follows that the first multiple of S_P appears earlier than the first multiple of P. So, by 2), S_P < P.
(End)
For any given set S of primes, the subsequence consisting of numbers whose prime factors are exactly the primes in S appears in increasing order. For example, if S = {2,3}, 6 appears first, in due course followed by 12, 18, 24, 36, 48, 54, 72, etc. The smallest numbers in each subsequence (i.e., those that appear first) are the squarefree numbers A005117(n), n > 1. - Bob Selcoe, Mar 06 2015

Crossrefs

Cf. A098548, A098551, A249943 (first time all 1..n appear), A251553.
The inverse permutation is in A098551.
A098552(n) = a(a(n)).
A251102(n) = GCD(a(n+2),a(n)).
Cf. A251101 (smallest prime factor), A251103 (largest prime factor), A251138 (number of distinct prime factors), A251140 (total number of prime factors), A251045 (squarefree part), A251089 (squarefree kernel), A250127 and A251415 (records for a(n)/n), A251411 (fixed points), A248647 (records).
Cf. also A251412 (trajectory of 11), A251556 (finite cycles), A251413 and A251414 (variant involving odd numbers), A249357 ("Fibonacci" variant).
Smallest missing numbers: A251416, A251417, A251546-A251552, A247253. See also A251557, A241558, A251559.
Indices of some pertinent subsequences: A251237 (even numbers), A251238 (odd numbers), A251391 (squarefree), A251541 and A251239 (primes), A251240 (squares of primes), A251241 (prime powers), A251393 (powers of 2), A251392 (nonprimes), A253297 (primes p for which some multiple k*p > 2*p precedes p).
Three arrays concerning the occurrences of multiples of primes: A251637, A251715, A251716.
Two sequences related to the numbers which immediately follow a prime: A253048, A253049. Seven sequences related to the numbers that appear two steps after primes: A251542, A251543, A251544, A251545, A253052, A253053, A253054. See also A253055 and A253056.
Other starting values: A251554, A251555.
See also A064413 (EKG sequence), A255582, A121216 (similar sequences), A257112 (two-dimensional analog).
See also A253765 and A253766 (bisections), A250299 (parity), A253768 (partial sums).
See A336957 for a variation.

Programs

  • Haskell
    import Data.List (delete)
    a098550 n = a098550_list !! (n-1)
    a098550_list = 1 : 2 : 3 : f 2 3 [4..] where
       f u v ws = g ws where
         g (x:xs) = if gcd x u > 1 && gcd x v == 1
                       then x : f v x (delete x ws) else g xs
    -- Reinhard Zumkeller, Nov 21 2014
    
  • Maple
    N:= 10^4: # to get a(1) to a(n) where a(n+1) is the first term > N
    B:= Vector(N,datatype=integer[4]):
    for n from 1 to 3 do A[n]:= n: od:
    for n from 4 do
      for k from 4 to N do
        if B[k] = 0 and igcd(k,A[n-1]) = 1 and igcd(k,A[n-2]) > 1 then
           A[n]:= k;
           B[k]:= 1;
           break
        fi
      od:
      if k > N then break fi
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Nov 21 2014
  • Mathematica
    f[lst_List] := Block[{k = 4}, While[ GCD[ lst[[-2]], k] == 1 || GCD[ lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; Nest[f, {1, 2, 3}, 68] (* Robert G. Wilson v, Nov 21 2014 *)
    NN = Range[4, 1000]; a098550 = {1, 2, 3}; g = {-1}; While[g[[1]] != 0, g = Flatten[{FirstPosition[NN, v_ /; GCD[a098550[[-1]], v] == 1 && GCD[a098550[[-2]], v] > 1, 0]}]; If[g[[1]] != 0, d = NN[[g]]; a098550 = Flatten[Append[a098550, d[[1]]]]; NN = Delete[NN, g[[1]]]]]; Table[a098550[[n]], {n, 71}] (* L. Edson Jeffery, Jan 01 2015 *)
  • PARI
    a(n, show=1, a=3, o=2, u=[])={n<3&&return(n); show&&print1("1, 2"); for(i=4,n, show&&print1(","a); u=setunion(u, Set(a)); while(#u>1 && u[2]==u[1]+1, u=vecextract(u,"^1")); for(k=u[1]+1, 9e9, gcd(k,o)>1||next; setsearch(u,k)&&next; gcd(k,a)==1||next; o=a; a=k; break)); a} \\ Replace "show" by "a+1==i" in the main loop to print only fixed points. - M. F. Hasler, Dec 01 2014
    
  • Python
    from math import gcd
    A098550_list, l1, l2, s, b = [1,2,3], 3, 2, 4, {}
    for _ in range(1,10**6):
        i = s
        while True:
            if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1:
                A098550_list.append(i)
                l2, l1, b[i] = l1, i, 1
                while s in b:
                    b.pop(s)
                    s += 1
                break
            i += 1 # Chai Wah Wu, Dec 04 2014

A251417 Lengths of runs of identical terms in A251416.

Original entry on oeis.org

1, 1, 1, 5, 1, 5, 1, 6, 1, 7, 1, 12, 8, 10, 1, 17, 8, 1, 13, 13, 13, 5, 10, 11, 5, 9, 8, 19, 10, 11, 7, 11, 5, 9, 27, 9, 13, 5, 23, 5, 9, 17, 9, 11, 11, 7, 21, 9, 7, 5, 17, 27, 11, 7, 9, 17, 5, 13, 9, 21, 11, 7, 13, 9, 9
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2014

Keywords

Comments

It would be nice to have an alternative description of this sequence, one that is not based on A098550.
It appears (conjecture) that a(n)>1 for n>18. - Alexander R. Povolotsky, Dec 07 2014
Conjecture: a(n) = A247253(n-5) for n>12. - Reinhard Zumkeller, Dec 07 2014
The previous conjecture is equivalent to the statement that A251416(n) lists all primes and only primes after a(30)=18. - M. F. Hasler, Dec 08 2014

Examples

			See A251595.
		

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a251417 n = a251417_list !! (n-1)
    a251417_list = map length $ group a251416_list
    -- Reinhard Zumkeller, Dec 05 2014
  • Mathematica
    termsOfA251416 = 700;
    f[lst_List] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
    A098550 = Nest[f, {1, 2, 3}, termsOfA251416 - 3];
    b[1] = 2;
    b[n_] := b[n] = For[k = b[n-1], True, k++, If[FreeQ[A098550[[1 ;; n]], k], Return[k]]];
    A251416 = Array[b, termsOfA251416];
    Length /@ Split[A251416] (* Jean-François Alcover, Aug 01 2018, after Robert G. Wilson v *)

Formula

Let f(n)=A098551(A251595(n)). Then one can prove that A251417(n) = f(n) - f(n-1), n>=2. - Vladimir Shevelev, Dec 09 2014

A249943 a(n) = smallest k such that the numbers 1..n appear among A098550(1), ..., A098550(k), or a(n) = 0 if there is no such k.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 15, 15, 15, 16, 22, 22, 23, 23, 23, 23, 30, 31, 43, 43, 43, 43, 51, 51, 51, 51, 51, 51, 61, 61, 62, 62, 62, 62, 62, 62, 79, 79, 79, 79, 87, 87, 88, 88, 88, 88, 101
Offset: 1

Views

Author

Vladimir Shevelev, Dec 04 2014

Keywords

Comments

The conjecture that all terms are positive is equivalent to the known conjecture that A098550 is a permutation of the positive integers.
Partial maxima of A098551: a(n) = max{a(n-1),A098551(n)} for n > 1. - Reinhard Zumkeller, Dec 06 2014

Examples

			Let n=6. Since A098550(9)=5 and A098550(10)=6, a(6)=10. - Corrected by _David Applegate_, Dec 08 2014
		

Crossrefs

Cf. A251620 (duplicates removed), A251621 (run lengths).

Programs

  • Haskell
    a249943 n = a249943_list !! (n-1)
    a249943_list = scanl1 max $ map a098551 [1..]
    -- Reinhard Zumkeller, Dec 06 2014
  • Mathematica
    f[lst_List] := Block[{k=4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k]>1 || MemberQ[lst, k], k++]; Append[lst, k]]; A098550 = Nest[f, {1, 2, 3}, 100]; runningMax := Rest[FoldList[Max, -Infinity, #]]&; runningMax[Take[Ordering[A098550], NestWhile[#+1&, 1, MemberQ[A098550, #]&]-1]] (* Jean-François Alcover, Dec 05 2014, after Robert G. Wilson v and Peter J. C. Moses *)

Formula

The author conjectures that a(n)/n <= a(19)/19 = 43/19. Peter J. C. Moses verified that the strict inequality holds for 19 < n <= 1.1*10^5. - Vladimir Shevelev, Dec 06 2014

A251637 Square array read by antidiagonals containing in row n the multiples of prime(n) in A098550 in order of appearance.

Original entry on oeis.org

2, 3, 4, 15, 9, 8, 14, 5, 15, 14, 22, 35, 25, 6, 6, 39, 11, 7, 35, 12, 12, 51, 13, 33, 21, 10, 21, 16, 38, 17, 26, 55, 28, 20, 27, 10, 69, 19, 85, 65, 44, 91, 45, 39, 20, 87, 23, 95, 34, 91, 99, 49, 85, 33, 22, 62, 29, 115, 57, 68, 52, 77, 63, 55, 45, 26, 74
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 07 2014

Keywords

Comments

T(n,k) = A251715(n,k)*A000040(n); A251715(n,k) = T(n,k)/A000040(n);
T(n,k) = A098550(A251716(n,k)); A251716(n,k) = A098551(T(n,k));
T(n,1) = A251618(n); for n > 4: T(n,2) = A000040(n);
conjecture: A098550 is a permutation of the positive integers iff A001221(n) = number of rows containing n.
A251541 = first column, and A251544 = third column for row numbers > 4. - Reinhard Zumkeller, Dec 16 2014

Examples

			.   n   p |  first 14 multiples of p = prime(n) in A098550, n = 1..25
.  -------+-------------------------------------------------------------
.   1   2 |   2  4   8  14   6  12  16  10   20  22   26   28   32   18
.   2   3 |   3  9  15   6  12  21  27  39   33  45   51   18   24   36
.   3   5 |  15  5  25  35  10  20  45  85   55  65   30   95   40   50
.   4   7 |  14 35   7  21  28  91  49  63   42  56   77  119  133  161
.   5  11 |  22 11  33  55  44  99  77  66   88 165  143  121  187  110
.   6  13 |  39 13  26  65  91  52 117  78  104 195  143  130  156  221
.   7  17 |  51 17  85  34  68 119 153 102  187 136  170  255  221  204
.   8  19 |  38 19  95  57 133  76 171 114  152 209  247  190  285  228
.   9  23 |  69 23 115  46 161  92 138 207  184 253  299  345  230  276
.  10  29 |  87 29  58 145 203 116 174 261  232 319  377  290  435  348
.  11  31 |  62 31  93 155 124 217 279 186  341 403  248  465  310  372
.  12  37 |  74 37 111 185 148 259 222 333  296 407  555  370  629  481
.  13  41 | 123 41  82 205 164 287 246 369  451 328  410  533  615  492
.  14  43 |  86 43 129 215 172 301 387 258  473 344  430  645  559  516
.  15  47 |  94 47 329 141 235 188 282 423  517 376  470  611  705  564
.  16  53 | 106 53 265 159 212 371 318 477  424 583  689  530  795  636
.  17  59 | 118 59 177 295 236 413 354 531  649 472  767  590  885 1003
.  18  61 | 122 61 427 183 305 244 366 549  671 488  793  610  915  732
.  19  67 | 201 67 335 134 268 469 603 402  536 737  871  670 1005  804
.  20  71 | 142 71 213 355 284 497 426 639  568 781  710 1065  923  852
.  21  73 | 146 73 365 219 292 511 438 657  584 803  730  949 1095  876
.  22  79 | 158 79 237 395 316 553 474 711  632 869 1027  790 1185  948
.  23  83 | 249 83 581 166 415 332 498 747  913 664 1079  830 1245  996
.  24  89 | 178 89 267 445 356 623 534 801  712 979 1157  890 1335 1068
.  25  97 | 291 97 679 194 485 388 582 873 1067 776  970 1261 1455 1164 .
.  ---------------------------------------------------------------------
See also A251715 for a table with T(n,k)/p and A251716 for a table of indices of T(n,k) within A098550.
		

Crossrefs

Cf. A098550, A000040, A251618 (first column), A001221, A251715, A251716.

Programs

  • Haskell
    when seen as table read by rows:
    a251637 n k = a251637_tabl !! (n-1) !! (k-1)
    a251637_row n= a251637_tabl !! (n-1)
    a251637_tabl = adias $ map
       (\k -> filter
         ((== 0) . flip mod (fromInteger $ a000040 k)) a098550_list) [1..]
  • Mathematica
    rows = 25; (* f = A098550 *) Clear[f, row]; f[n_ /; n <= 3] := n; f[n_] := f[n] = Module[{k}, For[k=4, GCD[f[n-2], k] == 1 || GCD[f[n-1], k]>1 || MemberQ[Array[f, n-1], k], k++]; k]; row[n_] := row[n] = Module[{k, cnt}, Reap[For[k=1; cnt=0, cnt <= rows-n, k++, If[Divisible[f[k], Prime[n]], cnt++; Sow[f[k]]]]][[2, 1]]]; A251637 = Table[row[n-k+1][[k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 17 2014 *)

A251716 Array of positions of A251637(n,k) in A098550.

Original entry on oeis.org

2, 3, 4, 7, 5, 6, 8, 9, 7, 8, 20, 13, 11, 10, 10, 21, 22, 15, 13, 12, 12, 28, 23, 24, 17, 16, 17, 14, 41, 30, 25, 34, 27, 18, 19, 16, 49, 43, 32, 36, 46, 38, 26, 21, 18, 59, 51, 45, 35, 38, 66, 40, 32, 24, 20, 60, 61, 53, 47, 67, 54, 68, 42, 34, 26, 25, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 09 2014

Keywords

Comments

T(n,k) = A098551(A251637(n,k));
A251637(n,k) = A098550(T(n,k));
T(n,k+1) > T(n,k) + 1, according definition of A098550;
conjecture: A098550 is a permutation of the positive integers iff all integers > 1 occur exactly once.

Examples

			.   n   p |  Indices of A251637(n,k) in A098550, n = 1..25, k= 1..14
.  -------+-------------------------------------------------------------
.   1   2 |   2   4   6   8  10  12  14  16  18  20   25   27   29   31
.   2   3 |   3   5   7  10  12  17  19  21  24  26   28   31   33   37
.   3   5 |   7   9  11  13  16  18  26  32  34  36   39   45   48   50
.   4   7 |   8  13  15  17  27  38  40  42  44  58   68   70   72   74
.   5  11 |  20  22  24  34  46  66  68  73  91 100  122  124  126  128
.   6  13 |  21  23  25  36  38  54  83  95 108 120  122  139  178  185
.   7  17 |  28  30  32  35  67  70 111 115 126 141  174  183  185  218
.   8  19 |  41  43  45  47  72  82 113 123 163 166  189  201  221  248
.   9  23 |  49  51  53  56  74  93 149 157 197 228  230  244  252  304
.  10  29 |  59  61  63  96 105 121 188 198 250 259  265  314  323  387
.  11  31 |  60  62  64  98 135 179 200 207 261 263  268  335  343  402
.  12  37 |  77  79  81 118 161 193 241 253 320 348  392  400  411  413
.  13  41 |  85  87  89 146 172 208 266 278 350 358  442  451  478  553
.  14  43 |  86  88  90 148 184 210 280 286 352 369  459  487  489  561
.  15  47 |  99 101 103 109 150 199 306 344 403 406  509  516  538  616
.  16  53 | 112 114 116 131 227 295 349 381 455 470  518  574  610  704
.  17  59 | 125 127 129 219 254 305 389 439 472 511  626  640  697  717
.  18  61 | 130 132 134 136 242 258 396 445 474 531  628  654  726  795
.  19  67 | 140 142 144 147 292 307 458 463 576 581  630  740  772  871
.  20  71 | 151 153 155 287 308 397 469 501 623 636  775  815  837  932
.  21  73 | 156 158 160 162 316 399 480 532 633 686  801  839  865  952
.  22  79 | 165 167 169 289 341 418 515 545 687 690  841  855  917 1033
.  23  83 | 173 175 177 182 321 360 555 577 711 723  843  898  988 1083
.  24  89 | 192 194 196 333 382 512 585 641 771 800  933  972 1075 1155
.  25  97 | 202 204 206 211 370 426 631 695 802 844 1052 1092 1177 1266
.  ---------------------------------------------------------------------
See table A251637 for A098550(T(n,k)).
		

Crossrefs

Cf. A098550, A098551, A251637, A251237 (first row), A251553 (second row).
Cf. A251541 (first column).

Programs

  • Haskell
    seen as table read by rows:
    a251716 n k = a251716_tabl !! (n-1) !! (k-1)
    a251716_row n = a251716_tabl !! (n-1)
    a251716_tabl = map (map a098551) a251637_tabl

A255479 Inverse permutation to A255582.

Original entry on oeis.org

1, 2, 3, 4, 10, 5, 13, 6, 7, 8, 21, 9, 24, 11, 12, 16, 31, 14, 38, 18, 15, 23, 43, 20, 30, 22, 17, 25, 51, 28, 59, 27, 19, 29, 32, 37, 67, 36, 26, 34, 78, 35, 81, 39, 42, 41, 90, 44, 52, 46, 33, 48, 101, 47, 58, 50, 40, 49, 108, 55, 119, 57, 54, 64, 60, 63, 131, 66, 45, 62, 136, 68
Offset: 1

Views

Author

N. J. A. Sloane, Feb 27 2015

Keywords

Comments

The differences |a(n)-A064664(n)| seem surprisingly small (see A255482).
About the definition: the map n -> A255582(n) is an element of the group of all permutations of the positive integers; this is the inverse of that permutation.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a255479 = (+ 1) . fromJust. (`elemIndex` a255582_list)
    -- Reinhard Zumkeller, Mar 10 2015

A251595 Distinct terms in A251416.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 13, 17, 18, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 05 2014

Keywords

Comments

A251417(n) gives number of repetitions of a(n) in A251416;
a(n) = prime(n-4) for n > 11 according to Bradley Klee's conjecture, empirically confirmed for the first 10000 primes;
equivalently: A098551(a(n)) = A251239(n-4) for n > 11.

Examples

			.   n |     a(n)     | A151417(n) | A098551(a(n))
. ----+--------------+------------+--------------
.   1 |    2         |          1 |             2
.   2 |    3         |          1 |             3
.   3 |    4 = 2*2   |          1 |             4
.   4 |    5         |          5 |             9
.   5 |    6 = 2*3   |          1 |            10
.   6 |    7         |          5 |            15
.   7 |   10 = 2*5   |          1 |            16
.   8 |   11         |          6 |            22
.   9 |   13         |          1 |            23
.  10 |   17         |          7 |            30
.  11 |   18 = 2*3*3 |          1 |            31
.  12 |   19         |         12 |            43
.  13 |   23         |          8 |            51
.  14 |   29         |         10 |            61
.  15 |   31         |          1 |            62
.  16 |   37         |         17 |            79
.  17 |   41         |          8 |            87
.  18 |   43         |          1 |            88
.  19 |   47         |         13 |           101
.  20 |   53         |         13 |           114
.  21 |   59         |         13 |           127
.  22 |   61         |          5 |           132
.  23 |   67         |         10 |           142
.  24 |   71         |         11 |           153
.  25 |   73         |          5 |           158
The last column gives the position of a(n) in A098550.
		

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a251595 n = a251595_list !! (n-1)
    a251595_list = map head $ group a251416_list

A255940 Inverse permutation to A249167.

Original entry on oeis.org

1, 2, 3, 6, 7, 13, 12, 4, 25, 9, 17, 8, 24, 20, 5, 32, 37, 11, 38, 16, 10, 15, 44, 18, 49, 22, 23, 14, 54, 28, 65, 30, 21, 35, 43, 27, 70, 40, 26, 33, 78, 45, 83, 29, 57, 42, 88, 34, 96, 47, 39, 31, 106, 55, 19, 50, 36, 52, 115, 41, 120, 63, 59, 48, 73, 66
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 12 2015

Keywords

Crossrefs

Cf. A249167 (inverse), A098551, A255479.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a255940 = (+ 1) . fromJust . (`elemIndex` a249167_list)

A098552 A098550(A098550(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 14, 7, 16, 9, 8, 26, 12, 34, 10, 15, 6, 39, 22, 28, 11, 30, 25, 35, 24, 45, 95, 51, 23, 85, 21, 20, 123, 33, 75, 55, 64, 65, 88, 17, 69, 91, 58, 27, 63, 78, 42, 81, 49, 54, 50, 13, 40, 102, 48, 72, 44, 111, 46, 41, 31, 32, 18, 56, 92, 93, 94, 77, 74, 52, 112, 62
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 14 2004

Keywords

Comments

Integer permutation with inverse A098553; A098551(a(n)) = a(A098551(n)) = A098550(n).

Crossrefs

Programs

  • Haskell
    a098552 = a098550 . a098550  -- Reinhard Zumkeller, Nov 21 2014
  • Mathematica
    f[lst_List] := Block[{k = 4}, While[ GCD[ lst[[-2]], k] == 1 || GCD[ lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; lst[[#]] & /@ Take[lst = Nest[f, {1, 2, 3}, 120], 71] (* Robert G. Wilson v, Nov 21 2014 *)
Showing 1-10 of 11 results. Next