cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A351983 Number of integer compositions of n with exactly one part above the diagonal.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 18, 35, 67, 131, 257, 505, 996, 1973, 3915, 7781, 15486, 30855, 61527, 122764, 245069, 489412, 977673, 1953515, 3904108, 7803545, 15599618, 31187269, 62355347, 124679883, 249310255, 498540890, 996953659, 1993701032, 3987069747, 7973603891
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2022

Keywords

Examples

			The a(2) = 1 through a(6) = 18 compositions:
  (2)  (3)   (4)    (5)     (6)
       (21)  (13)   (14)    (15)
             (22)   (32)    (42)
             (31)   (41)    (51)
             (211)  (131)   (114)
                    (212)   (132)
                    (221)   (141)
                    (311)   (213)
                    (2111)  (222)
                            (312)
                            (321)
                            (411)
                            (1311)
                            (2112)
                            (2121)
                            (2211)
                            (3111)
                            (21111)
		

Crossrefs

The version for permutations is A000295, weak A057427.
The version for partitions is A002620, weak A001477.
The weak version is A177510.
The version for fixed points is A240736, nonfixed A352520.
This is column k = 1 of A352524; column k = 0 is A008930.
A238349 counts compositions by fixed points, first column A238351.
A352521 counts compositions by strong nonexcedances, first column A219282.
A352522 counts compositions by weak nonexcedances, first column A238874.
A352523 counts compositions by nonfixed points, first column A010054.
A352524 counts compositions by strong excedances, first column A008930.
A352525 counts compositions by weak excedances, first column A177510.

Programs

  • Mathematica
    pless[y_]:=Length[Select[Range[Length[y]],#
    				
  • PARI
    S(v,u,c=0)={vector(#v, k, c + sum(i=1, k-1, v[k-i]*u[i]))}
    seq(n)={my(v=vector(1+n), s=0); v[1]=1; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1)), O(x^2)); s+=apply(p->polcoef(p,1), v)); s} \\ Andrew Howroyd, Jan 02 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 02 2023

A372102 Number of permutations of [n] whose non-fixed points are not neighbors.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 19, 45, 107, 278, 728, 2033, 5749, 17105, 51669, 162674, 520524, 1724329, 5807143, 20146861, 71048431, 257139686, 945626800, 3558489633, 13599579817, 53060155137, 210124405097, 847904374466, 3470756061140, 14453943647561, 61023690771451
Offset: 0

Views

Author

Alois P. Heinz, Apr 18 2024

Keywords

Examples

			a(3) = 2: 123, 321.
a(4) = 4: 1234, 1432, 3214, 4231.
a(5) = 9: 12345, 12543, 14325, 15342, 32145, 32541, 42315, 52143, 52341.
a(6) = 19: 123456, 123654, 125436, 126453, 143256, 143652, 153426, 163254, 163452, 321456, 325416, 326451, 423156, 423651, 521436, 523416, 621453, 623154, 623451.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [2$3, 4][n+1],
          3*a(n-1)+(n-2)*a(n-2)+(n-1)*(a(n-4)-a(n-3)))/2
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[Binomial[n + 1 - k, k] * Subfactorial[k], {k, 0, (n + 1)/2}];
    Table[a[n], {n, 0, 30}] (* Peter Luschny, Apr 24 2024 *)

Formula

a(n) = Sum_{j=0..floor((n+1)/2)} A000166(j)*A011973(n+1,j).
a(n) mod 2 = A131735(n+3).
Row sums of A371995(n+1), which are the antidiagonals of A098825. - Peter Luschny, Apr 24 2024
a(n) ~ sqrt(Pi) * exp(sqrt(n/2) - n/2 - 7/8) * n^(n/2 + 1) / 2^((n+3)/2). - Vaclav Kotesovec, Apr 25 2024

A281262 Number of permutations of [2n] with exactly n fixed points.

Original entry on oeis.org

1, 0, 6, 40, 630, 11088, 244860, 6362928, 190900710, 6490575520, 246642054516, 10358965584240, 476512419579196, 23825620968559200, 1286583532342313400, 74621844875699059680, 4626554382293942780550, 305352589231397889910080, 21374681246197861368840900
Offset: 0

Views

Author

Alois P. Heinz, Apr 12 2017

Keywords

Examples

			a(2) = 6: 1243, 1324, 1432, 2134, 3214, 4231.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1-n,
          (4*n-2)*((n-1)*a(n-1)+(4*n-6)*a(n-2))/n)
        end:
    seq(a(n), n=0..20);
  • Mathematica
    a[n_] := Binomial[2n, n] Subfactorial[n];
    a /@ Range[0, 20] (* Jean-François Alcover, Sep 01 2021 *)

Formula

a(n) = (4*n-2)*((n-1)*a(n-1)+(4*n-6)*a(n-2))/n for n>1, a(n) = 1-n for n<2.
a(n) = binomial(2n,n) * A000166(n).
a(n) = A008290(2n,n) = A098825(2n,n).

A352875 Number of integer compositions y of n with a fixed point y(i) = i.

Original entry on oeis.org

0, 1, 1, 2, 5, 10, 21, 42, 86, 174, 351, 708, 1424, 2861, 5743, 11520, 23092, 46269, 92673, 185562, 371469, 743491, 1487870, 2977164, 5956616, 11916910, 23839736, 47688994, 95393322, 190811346, 381662507, 763389209, 1526881959, 3053930971, 6108131542, 12216698288
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 0 through a(5) = 10 compositions (empty column indicated by dot):
  .  (1)  (11)  (12)   (13)    (14)
                (111)  (22)    (32)
                       (112)   (113)
                       (121)   (122)
                       (1111)  (131)
                               (221)
                               (1112)
                               (1121)
                               (1211)
                               (11111)
		

Crossrefs

The version for partitions is A001522, ranked by A352827 (unproved).
The version for permutations is A002467, complement A000166.
The complement for partitions is A064428, ranked by A352826 (unproved).
This is the sum of latter columns of A238349, nonfixed A352523.
The complement is counted by A238351.
The complement for reversed partitions is A238394, ranked by A352830.
The version for reversed partitions is A238395, ranked by A352872.
The case of just one fixed point is A240736.
A008290 counts permutations by fixed points, nonfixed A098825.
A011782 counts compositions.
A115720 and A115994 count partitions by Durfee square.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352512 counts fixed points in standard compositions, nonfixed A352513.
A352521 = comps by subdiags, first col A219282, rank stat A352514.
A352522 = comps by weak subdiags, first col A238874, rank stat A352515.
A352524 = comps by superdiags, first col A008930, rank stat A352516.
A352525 = comps by weak superdiags, col k=1 A177510, rank stat A352517.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pq[#]>0&]],{n,0,15}]
  • PARI
    S(v,u,c)={vector(#v, k, c + sum(i=1, k-1, v[k-i]*u[i]))}
    seq(n)={my(v=vector(1+n), s=vector(#v, i, 2^(i-2))); v[1]=1; s[1]=0; for(i=1, n, v=S(v, vector(n, j, if(j==i,'x,1)), O(x)); s-=apply(p->polcoef(p,0), v)); s} \\ Andrew Howroyd, Jan 02 2023

Formula

a(n) = 2^(n-1) - A238351(n) for n >= 1. - Andrew Howroyd, Jan 02 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 02 2023

A373417 Triangle T(n,k) for the number of permutations in symmetric group S_n with (n-k) fixed points and an even number of non-fixed point cycles. Equivalent to the number of cycles of n items with cycle type defined by non-unity partitions of k<=n that contain an even number of parts.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 15, 20, 1, 0, 0, 0, 45, 120, 130, 1, 0, 0, 0, 105, 420, 910, 924, 1, 0, 0, 0, 210, 1120, 3640, 7392, 7413, 1, 0, 0, 0, 378, 2520, 10920, 33264, 66717, 66744, 1, 0, 0, 0, 630, 5040, 27300, 110880, 333585, 667440, 667476
Offset: 0

Views

Author

Keywords

Comments

A343418(n) + a(n) = A098825(n) = partial derangement "rencontres" triangle.
A343418(n) - a(n) = (k-1) * binomial(n,k) = A127717(n-1,k-1).
Difference of 1st and 2nd leading diagonals (n > 0).
T(n,n) - T(n,n-1) = -1,0,0,3,5,10,14,21,27,36,44,...
= (-1) + (1+0) + (3+2) + (5+4) + (7+6) + (9+8) + ...
Cf. A176222(n) with 2 terms -1,0 prepended (moving its offset from 3 to 1).

Examples

			Triangle array T(n,k):
  n:  {k<=n}
  0:  {1}
  1:  {1, 0}
  2:  {1, 0, 0}
  3:  {1, 0, 0, 0}
  4:  {1, 0, 0, 0,   3}
  5:  {1, 0, 0, 0,  15,   20}
  6:  {1, 0, 0, 0,  45,  120,   130}
  7:  {1, 0, 0, 0, 105,  420,   910,    924}
  8:  {1, 0, 0, 0, 210, 1120,  3640,   7392,   7413}
  9:  {1, 0, 0, 0, 378, 2520, 10920,  33264,  66717,  66744}
  10: {1, 0, 0, 0, 630, 5040, 27300, 110880, 333585, 667440, 667476}
T(n,0) = 1 due to sole permutation in S_n with n fixed points, namely the identity permutation, with 0 non-fixed point cycles, an even number. (T(0,0)=1 relies on S_0 containing an empty permutation.)
T(n,1) = 0 due to no permutations in S_n with (n-1) fixed points.
T(n,2) = T(n,3) = 0 due to only non-unity partitions of 2 and 3 being of odd length, namely the trivial partitions (2),(3).
Example:
T(4,4) = 3 since S_4 contains 3 permutations with 0 fixed points and an even number of non-fixed point cycles, namely the derangements: (12)(34),(13)(24),(14)(23).
Worked Example:
T(7,6) = 910 permutations in S_7 with 1 fixed point and an even number of non-fixed point cycles.
T(7,6) = 910 possible (4,2)- and (3,3)-cycles of 7 items.
N(n,y) = possible y-cycles of n items.
N(n,y) = (n!/(n-k)!) / (M(y) * s(y)).
y = partition of k<=n with q parts = (p_1, p_2, ..., p_i, ..., p_q)
s.t. k = Sum_{i=1..q} p_i.
Or:
y = partition of k<=n with d distinct parts, each with multiplicity m_j = (y_1^m_1, y_2^m_2, ..., y_j^m_j, ..., y_d^m_d)
s.t. k = Sum_{j=1..d} m_j*y_j.
M(y) = Product_{i=1..q} p_i = Product_{j=1..d} y_j^m_j.
s(y) = Product_{j=1..d} m_j! ("symmetry of repeated parts").
Note: (n!/(n-k)!) / s(y) = multinomial(n, {m_j}).
Therefore:
T(7,6) = N(7,y=(4,2)) + N(7,y=(3^2))
       = (7!/(4*2)) + (7!/(3^2)/2!)
       = 7! * (1/8 + 1/18)
       = 5040 * (13/72)
T(7,6) = 910.
		

Crossrefs

Cf. A373418 (odd case), A373339 (row sums), A216778 (main diagonal).

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(expand(`if`(j>1, x^j, 1)*
          b(n-j, irem(t+signum(j-1), 2)))*binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jun 04 2024
  • Mathematica
    Table[Table[n!/(n-k)!/2 * (Sum[(-1)^j/j!, {j, 0, k}] - ((k - 1)/k!)), {k, 0, n}], {n, 0, 10}]

Formula

T(n,k) = (n!/(n-k)!/2) * (Sum_{j=0..k} (-1)^j/j! - (k-1)/k!) Cf. Sum_{j=0..k} (-1)^j/j! = A053557(k) / A053556(k).

A373418 Triangle read by rows: T(n,k) is the number of permutations in symmetric group S_n with (n-k) fixed points and an odd number of non-fixed point cycles. Equivalent to the number of cycles of n items with cycle type defined by non-unity partitions of k <= n that contain an odd number of parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6, 8, 6, 0, 0, 10, 20, 30, 24, 0, 0, 15, 40, 90, 144, 135, 0, 0, 21, 70, 210, 504, 945, 930, 0, 0, 28, 112, 420, 1344, 3780, 7440, 7420, 0, 0, 36, 168, 756, 3024, 11340, 33480, 66780, 66752, 0, 0, 45, 240, 1260, 6048, 28350, 111600, 333900, 667520, 667485
Offset: 0

Views

Author

Keywords

Comments

a(n) + A343417(n) = A098825(n) = partial derangement "rencontres" triangle.
a(n) - A343417(n) = (k-1) * binomial(n,k) = A127717(n-1,k-1).
Difference of 2nd and 1st leading diagonals (n > 0):
T(n,n-1) - T(n,n) = 0,-1,1,2,6,9,15,20,28,35,45,54,...
= (0-1) + (2+1) + (4+3) + (6+5) + (8+7) + (10+9) + ...
Cf. A084265(n) with 2 terms 0,-1 prepended (moving its offset from 0 to -2).

Examples

			Triangle begins:
   n: {k<=n}
   0: {0}
   1: {0, 0}
   2: {0, 0,  1}
   3: {0, 0,  3,   2}
   4: {0, 0,  6,   8,    6}
   5: {0, 0, 10,  20,   30,   24}
   6: {0, 0, 15,  40,   90,  144,   135}
   7: {0, 0, 21,  70,  210,  504,   945,    930}
   8: {0, 0, 28, 112,  420, 1344,  3780,   7440,   7420}
   9: {0, 0, 36, 168,  756, 3024, 11340,  33480,  66780,  66752}
  10: {0, 0, 45, 240, 1260, 6048, 28350, 111600, 333900, 667520, 667485}
T(n,0) = 0 because the sole permutation in S_n with n fixed points, namely the identity permutation, has 0 non-fixed point cycles, not an odd number.
T(n,1) = 0 because there are no permutations in S_n with (n-1) fixed points.
Example:
T(3,3) = 2 since S_3 contains 3 permutations with 0 fixed points and an odd number of non-fixed point cycles, namely the derangements (123) and (132).
Worked Example:
T(7,6) = 945 permutations in S_7 with 1 fixed point and an odd number of non-fixed point cycles;
T(7,6) = 945 possible 6- and (2,2,2)-cycles of 7 items.
N(n,y) = possible y-cycles of n items;
N(n,y) = (n!/(n-k)!) / (M(y) * s(y)).
y = partition of k<=n with q parts = (p_1, p_2, ..., p_i, ..., p_q) such that k = Sum_{i=1..q} p_i.
Or:
y = partition of k<=n with d distinct parts, each with multiplicity m_j = (y_1^m_1, y_2^m_2, ..., y_j^m_j, ..., y_d^m_d) such that k = Sum_{j=1..d} m_j*y_j.
M(y) = Product_{i=1..q} p_i = Product_{j=1..d} y_j^m_j.
s(y) = Product_{j=1..d} m_j! ("symmetry of repeated parts").
Note: (n!/(n-k)!) / s(y) = multinomial(n, {m_j}).
Therefore:
T(7,6) = N(7,y=(6)) + N(7,y=(2^3))
       = (7!/6) + (7!/(2^3)/3!)
       = 7! * (1/6 + 1/48)
       = 5040 * (3/16);
T(7,6) = 945.
		

Crossrefs

Cf. A373417 (even case), A373340 (row sums), A216779 (main diagonal).

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(expand(`if`(j>1, x^j, 1)*
          b(n-j, irem(t+signum(j-1), 2)))*binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..10);
  • Mathematica
    Table[Table[n!/(n-k)!/2 * (Sum[(-1)^j/j!, {j, 0, k}] - ((k - 1)/k!)),{k,1,n}], {n,1,10}]

Formula

T(n,k) = (n!/(n-k)!/2) * ((Sum_{j=0..k} (-1)^j/j!) + (k-1)/k!). Cf. Sum_{j=0..k} (-1)^j/j! = A053557(k) / A053556(k).

A353315 Triangle read by rows where T(n,k) is the number of integer partitions of n with k parts on or below the diagonal (weak non-excedances).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 0, 1, 2, 2, 3, 2, 1, 0, 1, 2, 3, 3, 3, 2, 1, 0, 1, 3, 4, 4, 4, 3, 2, 1, 0, 1, 3, 6, 5, 5, 4, 3, 2, 1, 0, 1, 4, 7, 8, 6, 6, 4, 3, 2, 1, 0, 1, 4, 9, 10, 9, 7, 6, 4, 3, 2, 1, 0, 1, 6, 10, 14, 12, 10, 8, 6, 4, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			Triangle begins:
  1
  0  1
  1  0  1
  1  1  0  1
  1  2  1  0  1
  1  2  2  1  0  1
  2  2  3  2  1  0  1
  2  3  3  3  2  1  0  1
  3  4  4  4  3  2  1  0  1
  3  6  5  5  4  3  2  1  0  1
  4  7  8  6  6  4  3  2  1  0  1
  4  9 10  9  7  6  4  3  2  1  0  1
  6 10 14 12 10  8  6  4  3  2  1  0  1
  6 13 16 17 13 11  8  6  4  3  2  1  0  1
  8 15 21 21 19 14 12  8  6  4  3  2  1  0  1
  9 19 24 28 24 20 15 12  8  6  4  3  2  1  0  1
For example, row n = 9 counts the following partitions (empty column indicated by dot):
  9   72   522   3222   22221  222111  2211111  21111111  .  111111111
  54  81   621   4221   32211  321111  3111111
  63  333  711   5211   42111  411111
      432  3321  6111   51111
      441  4311  33111
      531
		

Crossrefs

Row sums are A000041.
Column k = 0 is A003106.
The strong version is A114088.
The opposite version is A115720/A115994, rank statistic A257990.
The version for permutations is A123125, strong A173018.
The version for compositions is A352522, rank statistic A352515.
The strong opposite version is A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A001522 counts partitions with a fixed point, ranked by A352827 (unproved).
A008292 is the triangle of Eulerian numbers.
A064428 counts partitions w/o a fixed point, ranked by A352826 (unproved).
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352490 gives the nonexcedance set of A122111, counted by A000701.

Programs

  • Mathematica
    pgeq[y_]:=Length[Select[Range[Length[y]],#>=y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],pgeq[#]==k&]],{n,0,15},{k,0,n}]

A371995 Triangle read by rows: T(n, k) = binomial(n - k, k) * subfactorial(k), for n >= 0 and 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 3, 1, 0, 6, 2, 1, 0, 10, 8, 1, 0, 15, 20, 9, 1, 0, 21, 40, 45, 1, 0, 28, 70, 135, 44, 1, 0, 36, 112, 315, 264, 1, 0, 45, 168, 630, 924, 265, 1, 0, 55, 240, 1134, 2464, 1855, 1, 0, 66, 330, 1890, 5544, 7420, 1854, 1, 0, 78, 440, 2970, 11088, 22260, 14832
Offset: 0

Views

Author

Peter Luschny, Apr 24 2024

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1;
  [2] 1, 0;
  [3] 1, 0;
  [4] 1, 0,  1;
  [5] 1, 0,  3;
  [6] 1, 0,  6,  2;
  [7] 1, 0, 10,  8;
  [8] 1, 0, 15, 20,  9;
  [9] 1, 0, 21, 40, 45;
		

Crossrefs

Cf. A000166, A011973, A098825, A372102 (row sums), A371998 (main diagonal).

Programs

  • Mathematica
    T[n_, k_] := Binomial[n - k, k] * Subfactorial[k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n/2}] // MatrixForm

Formula

T(n, k) = A011973(n, k) * A000166(k).
The rows are the antidiagonals of A098825.
Previous Showing 31-38 of 38 results.