cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A132023 Decimal expansion of Product_{k>=0} 1-1/(2*7^k).

Original entry on oeis.org

4, 5, 8, 7, 6, 6, 7, 2, 6, 6, 9, 9, 7, 6, 8, 9, 8, 5, 0, 2, 0, 0, 0, 5, 1, 5, 3, 3, 6, 9, 7, 4, 3, 7, 2, 1, 7, 8, 2, 5, 4, 6, 6, 8, 8, 7, 1, 4, 7, 3, 1, 8, 7, 0, 0, 7, 8, 2, 4, 4, 0, 1, 3, 8, 5, 0, 6, 9, 9, 7, 4, 4, 0, 3, 2, 6, 5, 9, 3, 0, 3, 6, 5, 2, 3, 7, 8, 1, 7, 1, 0, 9, 0, 4, 0, 5, 8, 4, 7, 5, 9, 8, 2
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.4587667266997689850200...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*7^k), {k, 0, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/2, 1/7], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_7(n))} floor(n/7^k)*7^k/n.
Equals lim inf_{n->oo} A132031(n)/n^(1+floor(log_7(n)))*7^(1/2*(1+floor(log_7(n)))*floor(log_7(n))).
Equals lim inf_{n->oo} A132031(n)/n^(1+floor(log_7(n)))*7^A000217(floor(log_7(n))).
Equals 1/2*exp(-Sum_{n>0} 7^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132031(n)/A132031(n+1).
Equals Product_{n>=1} (1 - 1/A109808(n)). - Amiram Eldar, May 08 2023

A132025 Decimal expansion of Product_{k>=0} 1-1/(2*9^k).

Original entry on oeis.org

4, 6, 8, 9, 4, 5, 1, 7, 8, 3, 6, 7, 0, 2, 3, 6, 9, 3, 2, 8, 3, 2, 8, 0, 0, 3, 5, 4, 1, 8, 6, 5, 6, 3, 9, 4, 0, 6, 8, 0, 4, 5, 7, 5, 8, 6, 9, 8, 9, 8, 5, 6, 0, 1, 6, 7, 1, 9, 7, 9, 9, 2, 3, 2, 7, 4, 7, 5, 7, 3, 2, 8, 3, 4, 6, 7, 0, 4, 3, 8, 1, 7, 5, 4, 9, 5, 0, 9, 4, 2, 7, 5, 7, 0, 0, 0, 1, 5, 9, 1, 7, 1, 1
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.4689451783670236932832800...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*9^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/2, 1/9], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_9(n))} floor(n/9^k)*9^k/n.
Equals lim inf_{n->oo} A132033(n)/n^(1+floor(log_9(n)))*9^(1/2*(1+floor(log_9(n)))*floor(log_9(n))).
Equals lim inf_{n->oo} A132033(n)/n^(1+floor(log_9(n)))*9^A000217(floor(log_9(n))).
Equals (1/2)*exp(-Sum_{n>0} 9^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132033(n)/A132033(n+1).
Equals Product_{n>=1} (1 - 1/A270369(n)). - Amiram Eldar, May 08 2023

A132021 Decimal expansion of Product_{k>=0} 1-1/(2*5^k).

Original entry on oeis.org

4, 3, 8, 7, 9, 6, 8, 3, 7, 2, 0, 3, 6, 3, 8, 5, 3, 1, 2, 6, 6, 7, 2, 9, 9, 9, 7, 1, 7, 7, 2, 5, 8, 3, 5, 9, 6, 0, 4, 5, 7, 4, 6, 3, 1, 2, 3, 9, 3, 5, 1, 1, 6, 5, 4, 1, 7, 7, 3, 6, 7, 5, 6, 4, 3, 6, 7, 9, 1, 0, 6, 6, 5, 6, 9, 8, 6, 6, 5, 0, 0, 6, 9, 2, 8, 9, 6, 6, 7, 2, 3, 8, 9, 8, 5, 4, 4, 0, 0, 6, 0, 2, 8
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.438796837203638531...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*5^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/2, 1/5], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_5(n))} floor(n/5^k)*5^k/n.
Equals lim inf_{n->oo} A132029(n)/n^(1+floor(log_5(n)))*5^(1/2*(1+floor(log_5(n)))*floor(log_5(n))).
Equals lim inf_{n->oo} A132029(n)/n^(1+floor(log_5(n)))*5^A000217(floor(log_5(n))).
Equals (1/2)*exp(-Sum_{n>0} 5^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132029(n)/A132029(n+1).
Equals Product_{n>=0} (1 - 1/A020729(n)). - Amiram Eldar, May 08 2023

A132031 Product{0<=k<=floor(log_7(n)), floor(n/7^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 28, 30, 32, 34, 36, 38, 40, 63, 66, 69, 72, 75, 78, 81, 112, 116, 120, 124, 128, 132, 136, 175, 180, 185, 190, 195, 200, 205, 252, 258, 264, 270, 276, 282, 288, 343, 350, 357, 364, 371, 378, 385, 448, 456, 464, 472, 480, 488
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-7 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(52)=floor(52/7^0)*floor(52/7^1)*floor(52/7^2)=52*7*1=364.
a(58)=464 since 58=112(base-7) and so a(58)=112*11*1(base-7)=58*8*1=464.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Mathematica
    Table[Times@@Floor[n/7^Range[0,Floor[Log[7,n]]]],{n,70}] (* Harvey P. Dale, Oct 11 2017 *)

Formula

Recurrence: a(n)=n*a(floor(n/7)); a(n*7^m)=n^m*7^(m(m+1)/2)*a(n).
a(k*7^m)=k^(m+1)*7^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_7(n))/2)this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_7(n)))/7^((1+floor(log_7(n)))*floor(log_7(n))/2); equality holds for n=k*7^m, 0=0. b(n) can also be written n^(1+floor(log_7(n)))/7^A000217(floor(log_7(n))).
Also: a(n)<=3^((1-log_7(3))/2)*n^((1+log_7(n))/2)=1.270209197...*7^A000217(log_7(n)), equality holds for n=3*7^m, m>=0.
a(n)>c*b(n), where c=0.4587667266997689850200... (see constant A132023).
Also: a(n)>c*(sqrt(2)/2^log_7(sqrt(2)))*n^((1+log_7(n))/2)=0.4587667266...*1.249972544...*7^A000217(log_7(n)).
lim inf a(n)/b(n)=0.4587667266997689850200..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_7(n))/2)=0.4587667266997689850200...*sqrt(2)/2^log_7(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_7(n))/2)=sqrt(3)/3^log_7(sqrt(3))=1.270209197..., for n-->oo.
lim inf a(n)/a(n+1)=0.4587667266997689850200... for n-->oo (see constant A132023).

A163467 a(n) = floor(p/2) * floor(floor(p/2)/2) * floor(floor(floor(p/2)/2)/2) * ... * 1, where p=prime(n).

Original entry on oeis.org

1, 1, 2, 3, 10, 18, 64, 72, 110, 294, 315, 1296, 2000, 2100, 2530, 6084, 8526, 9450, 33792, 38080, 46656, 53352, 82000, 106480, 248832, 270000, 275400, 322452, 341172, 460992, 615195, 2129920, 2515456, 2552448, 3548448, 3596400, 4161456
Offset: 1

Author

Keywords

Comments

Cumulative product of the residuals of a repeated shift-right operation on the base-2 representation of prime(n).

Examples

			For n=6, p=13, the intermediate factors are floor(13/2)=6, floor(6/2)=3, floor(3/2)=1, which yield a(6)=6*3*1=18.
For n=7, p=17, floor(17/2)=8, floor(8/2)=4, floor(4/2)=2, floor(2/2)=1, which yield a(7)=8*4*2*1=64.
		

Crossrefs

Cf. A098844.

Programs

  • Mathematica
    lst={};Do[p=Prime[n];s=1;While[p>1,p=IntegerPart[p/2];s*=p;];AppendTo[lst,s],{n,5!}];lst
    Table[Times@@Rest[NestWhileList[Floor[#/2]&,Prime[n],#>1&]],{n,40}] (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    a(n) = my(p=prime(n), k=1); while(p!=1, k *= p\2; p = p\2); k; \\ Michel Marcus, Jul 26 2017

Extensions

More divisions and primes mentioned in the definition by R. J. Mathar, Aug 02 2009
Previous Showing 41-45 of 45 results.