cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A133549 Sum of the fourth powers of the first n odd primes.

Original entry on oeis.org

81, 706, 3107, 17748, 46309, 129830, 260151, 539992, 1247273, 2170794, 4044955, 6870716, 10289517, 15169198, 23059679, 35177040, 49022881, 69174002, 94585683, 122983924, 161934005, 209392326, 272134567, 360663848, 464724249, 577275130
Offset: 1

Views

Author

Artur Jasinski, Sep 16 2007

Keywords

Examples

			a(2)=706 because 3^4 + 5^4 = 706.
		

Crossrefs

Programs

  • Maple
    a:=proc (n) options operator, arrow: add(ithprime(j)^4, j=2..n+1) end proc: seq(a(n),n=1..26); # Emeric Deutsch, Oct 02 2007
  • Mathematica
    c = 4; a = {}; b = 0; Do[b = b + Prime[n]^c; AppendTo[a, b], {n, 2, 1000}]; a

Formula

a(n) = A122102(n+1) - 16. - Michel Marcus, Nov 05 2013

Extensions

Comment corrected by Michel Marcus, Nov 05 2013

A263170 a(n) = (Sum_{k=1..n} prime(k))^3 - (Sum_{k=1..n} prime(k)^3).

Original entry on oeis.org

0, 90, 840, 4410, 20118, 64890, 186168, 440730, 972030, 2094330, 4013850, 7512570, 13279548, 21906810, 34902498, 54772410, 84444690, 124785210, 181983378, 259292154, 358930146, 492406650, 664548816, 889272570, 1186319550, 1559209530, 2012668266, 2568943290, 3232452450, 4031692410
Offset: 1

Views

Author

Altug Alkan, Oct 11 2015

Keywords

Comments

Obviously, a(n) is always an even number.
All a(n) are divisible by 6. - Robert Israel, Oct 16 2020

Examples

			For n = 2, a(2) = (2 + 3)^3 - (2^3 + 3^3) = 90.
		

Crossrefs

Cf. A007504, A098999. 3D analog of A065595.

Programs

  • Maple
    A263170 := proc(n)
        su := add(ithprime(i),i=1..n) ;
        su3 := add(ithprime(i)^3,i=1..n) ;
        su^3-su3 ;
    end proc: # R. J. Mathar, Oct 21 2015
  • Mathematica
    Table[Sum[Prime@ k, {k, n}]^3 - Sum[Prime[k]^3, {k, n}], {n, 30}] (* Michael De Vlieger, Oct 19 2015 *)
  • PARI
    a(n) = sum(k=1, n, prime(k))^3 - sum(k=1, n, prime(k)^3);

Formula

a(n) = A007504(n)^3 - A098999(n).
a(n) mod 2 = 0.

A097881 Decimal expansion of the sum from 1 to infinity of fraction sequence with numerator triangular numbers and denominator sum of prime cubes.

Original entry on oeis.org

2, 9, 4, 3, 9, 4, 2, 7
Offset: 0

Views

Author

Pierre CAMI, Sep 02 2004

Keywords

Examples

			0.29439427...
		

Formula

Equals Sum_{n>=1} A000217(n)/A098999(n). - R. J. Mathar, Dec 07 2014

Extensions

Offset corrected by R. J. Mathar, May 19 2009

A118219 Smallest number k>1 such that Sum_{i=1..k} Prime[i]^n divides Product_{i=1..k} Prime[i]^n.

Original entry on oeis.org

3, 30, 17, 248, 515, 49682
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

a(7)>991430. - Robert G. Wilson v, Mar 02 2007

Examples

			a(1) = 3 because 2 + 3 + 5 = 10 divides 2*3*5 = 30 but 2 + 3 = 5 does not divide 2*3 = 6.
		

Crossrefs

Cf. A051838 = Sum of first n primes divides product of first n primes. Cf. A125314 = Smallest number k>1 such that Sum_{i=1..k} i^n divides Product_{i=1..k} i^n. Cf. A007504, A002110, A024450, A098999, A122102, A122103.

Programs

  • Mathematica
    f[n_] := Block[{k = 2, p = 2, s = 2^n}, While[p = p*Prime@ k; s = s + Prime@ k^n; PowerMod[p, n, s] != 0, k++ ]; k]; Do[ Print@ f@n, {n, 10}] (* Robert G. Wilson v *)

Extensions

a(6) from Robert G. Wilson v, Mar 02 2007

A122124 Numbers n such that 25 divides Sum[ Prime[k]^n, {k,1,n}].

Original entry on oeis.org

3, 5, 7, 11, 15, 19, 23, 25, 27, 31, 35, 39, 43, 45, 47, 51, 55, 59, 63, 65, 67, 71, 75, 79, 83, 85, 87, 91, 95, 99, 103, 105, 107, 111, 115, 119, 123, 125, 127, 131, 135, 139, 143, 145, 147, 151, 155, 159, 163, 165, 167, 171, 175, 179, 183, 185, 187, 191, 195, 199
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006, Sep 18 2006, Sep 21 2006

Keywords

Comments

a(n) up to a(7) = 23 coincides with A007665[n+1] = Tower of Hanoi with 5 pegs. It appears that a(n) includes all A007665[n] = {1, 3, 5, 7, 11, 15, 19, 23, 27, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 383, 415, 447, 479, 511, 543, 575, 607, 639, 671, 703, 735, 767, 799, ...} except A007665[1] = 1.
Primes in this sequence include 5 and all primes of the form 4k+3, A002145[n]. Terms include all numbers of the form 10k+5 (with nonnegative k), A017329[n].

Examples

			There are 25 primes p < 100, p(n) = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}.
a(1) = because 25 divides Sum[p(n)^3,{n,1,25}] = 2^3 + 3^3 + ... + 89^3 + 97^3 = A098999[25] and does not divide Sum[p(n)^1,{n,1,25}] = A007504[25] and Sum[p(n)^2,{n,1,25}] = A024450[25].
The next a(2) = 5 because 25 divides Sum[p(n)^5,{n,1,25}] = A122103[25] and does not divide Sum[p(n)^4,{n,1,25}] = A122102[25].
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],IntegerQ[Sum[ Prime[k]^#1, {k,1,25}]/25]&]
  • PARI
    for(n=1,100,if(sum(k=1,25,prime(k)^n)%25==0,print1(n,",")));
    print;print("Alternative method not using primes:");
    for(n=1,100,m=(n-1)%6;print1((n-m)*3+(n-m+if(m>1,(m-1)*12-1,m*6-1))/3,",")) \\ K. Spage, Oct 23 2009
Previous Showing 11-15 of 15 results.