A176802 a(n) = the smallest natural numbers m such that product of harmonic mean of the divisors of n and harmonic mean of the divisors of m are integers.
1, 3, 2, 7, 28, 1, 4, 420, 182, 27, 270, 14, 126, 4, 6, 31, 1638, 91, 980, 7, 32, 84, 30240, 15, 248, 63, 10, 1, 8190, 3, 16, 21, 672, 819, 4, 60515, 117800, 420, 840, 84, 55860, 4, 332640, 42, 182, 1638, 30240, 62, 380, 744, 270, 4655, 167400, 5, 54, 60, 980
Offset: 1
Keywords
Examples
For n = 4; b(4) = 12/7, a(4) = 7 because b(7) = 7/4; 12/7 * 7/4 = 3 (integer).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..250
Programs
-
Mathematica
h[n_] := DivisorSigma[0, n]/DivisorSigma[-1, n]; a[n_] := Module[{hn = h[n], k = 1}, While[! IntegerQ[hn * h[k]], k++]; k]; Array[a, 35] (* Amiram Eldar, Mar 22 2024 *)
-
PARI
h(n) = {my(f = factor(n)); numdiv(f)/sigma(f, -1);} a(n) = {my(hn = h(n), k = 1); while(denominator(hn * h(k)) > 1, k++); k;} \\ Amiram Eldar, Mar 22 2024
Extensions
Data corrected and extended by Amiram Eldar, Mar 22 2024
Comments