cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A155589 a(n) = 6^n + 2^n - 1.

Original entry on oeis.org

1, 7, 39, 223, 1311, 7807, 46719, 280063, 1679871, 10078207, 60467199, 362799103, 2176786431, 13060702207, 78364180479, 470185017343, 2821109972991, 16926659575807, 101559956930559, 609359740534783, 3656158441111551, 21936950642475007, 131621703846461439
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-6*x)+1/(1-2*x)-1/(1-x).
E.g.f.: exp(6*x)+exp(2*x)-exp(x).
a(n) = 8*a(n-1)-12*a(n-2)-5 with a(0) = 1, a(1) = 7. - Vincenzo Librandi, Jul 21 2010

A155595 11^n+2^n-1.

Original entry on oeis.org

1, 12, 124, 1338, 14656, 161082, 1771624, 19487298, 214359136, 2357948202, 25937425624, 285311672658, 3138428380816, 34522712152122, 379749833599624, 4177248169448418, 45949729863637696, 505447028499424842
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-11*x)+1/(1-2*x)-1/(1-x). E.g.f.: e^(11*x)+e^(2*x)-e^x.
a(n)=13*a(n-1)-22*a(n-2)-10 with a(0)=1, a(1)=12 - Vincenzo Librandi, Jul 21 2010

A143960 a(n) = the n-th positive integer with exactly n zeros and n ones in its binary representation.

Original entry on oeis.org

2, 10, 38, 142, 542, 2110, 8318, 33022, 131582, 525310, 2099198, 8392702, 33562622, 134234110, 536903678, 2147549182, 8590065662, 34360000510, 137439477758, 549756862462, 2199025352702, 8796097216510, 35184380477438, 140737505132542, 562949986975742
Offset: 1

Views

Author

Leroy Quet, Sep 05 2008

Keywords

Examples

			The first of the (10) positive integers with exactly three 0's and three 1's in their binary representation are 35 (100011 in binary), 37 (100101 in binary), 38 (100110 in binary), etc. a(3) is the third of these, which is 38.
		

Crossrefs

Cf. A099393.

Programs

  • Mathematica
    Table[FromDigits[Select[Sort[Permutations[Flatten[Table[{1,0},n]]]],#[[1]] == 1&][[n]],2],{n,25}] (* or *) Table[2^(2n-1)+2^n-2,{n,25}] (* or *) LinearRecurrence[{7,-14,8},{2,10,38},25] (* The second and third programs are much faster than the first. *) (* Harvey P. Dale, Mar 11 2022 *)

Formula

a(n) = 2^(2n-1) + 2^n - 2.
G.f.: 2*x*(1-2*x-2*x^2)/((1-x)*(1-4*x)*(1-2*x)). a(n) = 2*A099393(n-1). [R. J. Mathar, Nov 03 2008; G.f. corrected by Georg Fischer, May 12 2019]

Extensions

More terms from R. J. Mathar, Nov 03 2008

A130567 Expansion of x*(2 - 7*x + 2*x^2)/((1-x)*(1-4*x)*(1-2*x)).

Original entry on oeis.org

2, 7, 23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623, 4198399, 16785407, 67125247, 268468223, 1073807359, 4295098367, 17180131327, 68720001023, 274878955519, 1099513724927, 4398050705407, 17592194433023, 70368760954879
Offset: 1

Views

Author

Roger L. Bagula, Aug 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_Integer?Positive] := f[n] = 2^(2*n - 1) + 2*f[n - 1] + 1; f[0] = 2; Table[f[n], {n, 0, 30}]
    CoefficientList[Series[x*(2-7x+2x^2)/((1-x)(1-4x)(1-2x)),{x,0,30}],x] (* Harvey P. Dale, Sep 07 2015 *)

Formula

a(n) = 2^(2*n - 1) + 2*a(n - 1) + 1.
From R. J. Mathar, Jun 13 2008: (Start)
O.g.f.: x*(2 - 7*x + 2*x^2)/((1-x)*(1-4*x)*(1-2*x)).
a(n) = A093069(n-2), n>1. (End)

Extensions

New name from Joerg Arndt, Feb 08 2015
Previous Showing 11-14 of 14 results.