cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A132325 Decimal expansion of Product_{k>=0} (1+1/10^k).

Original entry on oeis.org

2, 2, 2, 4, 4, 6, 9, 1, 3, 8, 2, 7, 4, 1, 0, 1, 2, 6, 4, 2, 5, 2, 1, 5, 6, 1, 3, 4, 1, 8, 8, 8, 1, 1, 6, 0, 7, 4, 9, 5, 0, 1, 4, 9, 3, 5, 1, 5, 5, 1, 8, 5, 6, 7, 1, 5, 7, 5, 9, 1, 6, 4, 7, 4, 0, 6, 6, 5, 0, 6, 9, 3, 8, 9, 7, 6, 2, 8, 2, 2, 0, 8, 7, 5, 2, 9, 4, 4, 4, 4, 5, 2, 8, 4, 2, 7, 0, 4, 7, 1, 1, 2, 9, 4, 8
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

Twice the constant A132326.

Examples

			2.22446913827410126425215613418881160749501...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; NProduct[1+1/10^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    2*N[QPochhammer[-1/10,1/10]] (* G. C. Greubel, Dec 02 2015 *)
  • PARI
    prodinf(x=0, 1+(1/10)^x) \\ Altug Alkan, Dec 03 2015

Formula

Equals lim sup_{n->oo} Product_{0<=k<=floor(log_10(n))} (1+1/floor(n/10^k)).
Equals lim sup_{n->oo} A132271(n)/n^((1+log_10(n))/2).
Equals lim sup_{n->oo} A132272(n)/n^((log_10(n)-1)/2).
Equals 2*exp(Sum_{n>0} 10^(-n)*Sum_{k|n} -(-1)^k/k) = 2*exp(Sum_{n>0} A000593(n)/(n*10^n)).
Equals lim sup_{n->oo} A132271(n+1)/A132271(n).
Equals 2*(-1/10; 1/10){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 02 2015
Equals sqrt(2) * exp(log(10)/24 + Pi^2/(12*log(10))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(10))) (McIntosh, 1995). - Amiram Eldar, May 20 2023

A258458 Number of partitions of n into parts of exactly 3 sorts which are introduced in ascending order.

Original entry on oeis.org

1, 7, 33, 130, 463, 1557, 5031, 15877, 49240, 151116, 460173, 1394645, 4212071, 12693724, 38195286, 114817389, 344911117, 1035659955, 3108817911, 9330152740, 27997803871, 84008165515, 252053831034, 756220333901, 2268778132337, 6806569134920, 20420175154486
Offset: 3

Views

Author

Alois P. Heinz, May 30 2015

Keywords

Crossrefs

Column k=3 of A256130.
Cf. A320545.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    a:= n-> T(n,3):
    seq(a(n), n=3..35);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]];
    T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i/(i!*(k - i)!), {i, 0, k}];
    a[n_] := T[n, 3];
    Table[a[n], {n, 3, 35}] (* Jean-François Alcover, May 22 2018, translated from Maple *)

Formula

a(n) ~ c * 3^n, where c = 1/(6*Product_{n>=1} (1-1/3^n)) = 1/(6*QPochhammer[1/3, 1/3]) = 1/(6*A100220) = 0.297552056999755698394581... . - Vaclav Kotesovec, Jun 01 2015

A370466 Decimal expansion of Product_{k>=1} 1 / (1 - 1/3^k).

Original entry on oeis.org

1, 7, 8, 5, 3, 1, 2, 3, 4, 1, 9, 9, 8, 5, 3, 4, 1, 9, 0, 3, 6, 7, 4, 8, 6, 2, 9, 6, 0, 1, 3, 7, 0, 3, 5, 3, 5, 7, 1, 8, 7, 9, 6, 0, 0, 8, 2, 0, 7, 9, 3, 9, 6, 1, 4, 2, 7, 4, 3, 0, 0, 4, 8, 2, 2, 8, 8, 4, 8, 1, 8, 1, 1, 6, 0, 9, 6, 9, 2, 7, 3, 2, 3, 7, 4, 0, 5, 5, 6, 9, 3, 7, 1, 1, 0, 3, 9, 4, 3, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 30 2024

Keywords

Examples

			1.7853123419985341903674862960137035357...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/QPochhammer[1/3], 10, 120][[1]] (* Vaclav Kotesovec, Mar 31 2024 *)

Formula

Equals 1/QPochhammer(1/3). - Vaclav Kotesovec, Mar 31 2024

A065498 Number of invertible n X n matrices mod 6 (i.e., over the ring Z_6).

Original entry on oeis.org

1, 2, 288, 1886976, 489104179200, 4755360379856486400, 1695944421638473850132889600, 21967113634648374162210646578639667200, 10286692771039109536373764545035369981946101760000, 173770439600109774111384717714984362383506603790098046648320000
Offset: 0

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 25 2001

Keywords

Crossrefs

Column k=6 of A316622.

Programs

  • Mathematica
    a[n_] := 6^(n^2)*Product[(1 - 1/2^k)*(1 - 1/3^k), { k, 1, n} ]; Table[ a[n], {n, 0, 9} ]

Formula

a(n) = 6^(n^2) * Product_{k=1..n} ((1 - 1/2^k)(1 - 1/3^k)).
a(n) = A002884(n)*A053290(n). - Geoffrey Critzer, Jan 26 2018
a(n) ~ c * 6^(n^2), where c = A048651 * A100220 = 0.161757743053... . - Amiram Eldar, Jul 06 2025

Extensions

More terms from Robert G. Wilson v, Nov 28 2001

A371746 Decimal expansion of Product_{k>=0} 1 / (1 + 1/3^k).

Original entry on oeis.org

3, 1, 9, 5, 0, 2, 2, 8, 8, 3, 1, 8, 7, 3, 8, 8, 9, 0, 1, 9, 4, 8, 0, 0, 7, 1, 0, 1, 1, 0, 9, 0, 0, 6, 5, 4, 2, 4, 2, 6, 8, 4, 5, 5, 1, 9, 4, 5, 6, 2, 2, 7, 5, 3, 6, 5, 1, 4, 7, 1, 7, 5, 9, 6, 0, 9, 2, 0, 1, 1, 7, 9, 9, 2, 8, 8, 4, 7, 6, 6, 4, 2, 4, 5, 0, 6, 1, 1, 7, 7, 9, 6, 5, 4, 3, 3, 8, 7, 1, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			0.31950228831873889019480071011090065424...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/QPochhammer[-1, 1/3], 10, 100][[1]]

Formula

Equals 1 / A132323.

A370467 Decimal expansion of Product_{k>=2} (1 - 1/k^k).

Original entry on oeis.org

7, 1, 9, 1, 5, 4, 5, 0, 0, 9, 6, 5, 0, 1, 0, 2, 4, 6, 6, 5, 4, 4, 6, 9, 3, 1, 0, 4, 1, 4, 5, 7, 8, 3, 9, 5, 3, 8, 6, 1, 1, 2, 9, 3, 8, 0, 3, 1, 6, 6, 5, 4, 9, 1, 5, 7, 7, 0, 3, 5, 6, 4, 9, 9, 1, 8, 3, 4, 8, 4, 6, 4, 0, 6, 5, 4, 1, 2, 1, 3, 3, 5, 8, 7, 2, 9, 4, 9, 5, 4, 1, 0, 2, 5, 9, 4, 7, 5, 7, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2024

Keywords

Examples

			0.719154500965010246654469310414578395386...
		

Crossrefs

A384368 Number of permutations of [2n] with n inversions.

Original entry on oeis.org

1, 1, 5, 29, 174, 1068, 6655, 41926, 266338, 1703027, 10947079, 70673825, 457927079, 2976282415, 19395654894, 126688273871, 829176461458, 5436687172806, 35703722618623, 234807844921153, 1546217013188447, 10193761267335877, 67275841673522196, 444431529264364506
Offset: 0

Views

Author

Alois P. Heinz, May 27 2025

Keywords

Examples

			a(0) = 1: the empty permutation.
a(1) = 1: 21.
a(2) = 5: 1342, 1423, 2143, 2314, 3124.
a(3) = 29: 123654, 124563, 124635, 125364, 125436, 126345, 132564, 132645, 134265, 134526, 135246, 142365, 142536, 143256, 152346, 213564, 213645, 214365, 214536, 215346, 231465, 231546, 234156, 241356, 312465, 312546, 314256, 321456, 412356.
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(mul((1-q^j)/(1-q), j=1..2*n), q, n+1), q, n):
    seq(a(n), n=0..23);

Formula

a(n) = A008302(2n,n).
a(n) ~ c * 3^(3*n - 1/2) / (sqrt(Pi*n) * 2^(2*n)), where c = QPochhammer(1/3) = A100220 = 0.5601260779279489449697922433141400143797363337983... - Vaclav Kotesovec, Jun 09 2025

A069920 Number of noninvertible n X n matrices mod 6 (i.e., over the ring Z_6).

Original entry on oeis.org

4, 1008, 8190720, 2332005728256, 23674927650073214976, 8618480376852061696039059456, 112746432609478969278312620164116381696, 53053593891934168169788522401776516627950360068096, 898369021875992553077210146021642426986208034219512412195782656
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 6^(n^2) * (1 - Product[(1 - 1/2^k) * (1 - 1/3^k), {k, 1, n}]); Array[a, 10] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n) = 6^(n^2)*(1-prod(k=1,n,(1-1/2^k)*(1-1/3^k)));

Formula

a(n) = 6^(n^2) - A065498(n).
a(n) ~ c * 6^(n^2), where c = 1 - A048651 * A100220 = 0.838242256946... . - Amiram Eldar, Jul 12 2025

Extensions

More terms from Benoit Cloitre, May 11 2002
Previous Showing 31-38 of 38 results.