cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A118827 2-adic continued fraction of zero, where a(n) = 1 if n is odd, otherwise -2*A006519(n/2).

Original entry on oeis.org

1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -32, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -64, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -16, 1, -2, 1, -4, 1, -2, 1, -8, 1, -2, 1, -4, 1, -2, 1, -32, 1, -2, 1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Comments

Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118824, A118830. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.
Multiplicative because both A006519 and A165326 are. - Andrew Howroyd, Aug 01 2018

Examples

			For n >= 1, convergents A118828(k)/A118829(k):
  at k = 4*n: -1/(2*A080277(n));
  at k = 4*n+1: -1/(2*A080277(n)-1);
  at k = 4*n+2: -1/(2*A080277(n)-2);
  at k = 4*n-1: 0.
Convergents begin:
  1/1, -1/-2, 0/-1, -1/2, -1/1, 1/0, 0/1, 1/-8,
  1/-7, -1/6, 0/-1, -1/10, -1/9, 1/-8, 0/1, 1/-24,
  1/-23, -1/22, 0/-1, -1/26, -1/25, 1/-24, 0/1, 1/-32,
  1/-31, -1/30, 0/-1, -1/34, -1/33, 1/-32, 0/1, 1/-64, ...
		

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, -2*2^(IntegerExponent[#, 2] - 1)] &, 99] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    a(n)=local(p=+1,q=-2);if(n%2==1,p,q*2^valuation(n/2,2))

Formula

a(n) = A165326(n) * A006519(n). - Andrew Howroyd, Aug 01 2018
From Amiram Eldar, Oct 28 2023: (Start)
Multiplicative with a(2^e) = -2^e, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 - 2^(1-s) + 1/(2-2^s)).
Sum_{k=1..n} a(k) ~ (-1/(2*log(2))) * n *(log(n) + gamma - log(2)/2 - 1), where gamma is Euler's constant (A001620). (End)

A118830 2-adic continued fraction of zero, where a(n) = -1 if n is odd, 2*A006519(n/2) otherwise.

Original entry on oeis.org

-1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 32, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 64, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 16, -1, 2, -1, 4, -1, 2, -1, 8, -1, 2, -1, 4, -1, 2, -1, 32, -1, 2, -1
Offset: 1

Views

Author

Paul D. Hanna, May 01 2006

Keywords

Comments

Limit of convergents equals zero; only the 6th convergent is indeterminate. Other 2-adic continued fractions of zero are: A118821, A118824, A118827. A006519(n) is the highest power of 2 dividing n; A080277 = partial sums of A038712, where A038712(n) = 2*A006519(n) - 1.

Examples

			For n >= 1, convergents A118831(k)/A118832(k):
  at k = 4*n: 1/(2*A080277(n));
  at k = 4*n+1: 1/(2*A080277(n)-1);
  at k = 4*n+2: 1/(2*A080277(n)-2);
  at k = 4*n-1: 0.
Convergents begin:
  -1/1, -1/2, 0/-1, -1/-2, 1/1, 1/0, 0/1, 1/8,
  -1/-7, -1/-6, 0/-1, -1/-10, 1/9, 1/8, 0/1, 1/24,
  -1/-23, -1/-22, 0/-1, -1/-26, 1/25, 1/24, 0/1, 1/32,
  -1/-31, -1/-30, 0/-1, -1/-34, 1/33, 1/32, 0/1, 1/64, ...
		

Crossrefs

Cf. A006519, A080277; convergents: A118831/A118832; variants: A118821, A118824, A118827; A100338.

Programs

  • Mathematica
    Array[If[OddQ@ #, -1, 2^IntegerExponent[#, 2]] &, 99] (* Michael De Vlieger, Nov 06 2018 *)
  • PARI
    a(n)=local(p=-1,q=+2);if(n%2==1,p,q*2^valuation(n/2,2))

A100865 Records in the continued fraction expansion A100864.

Original entry on oeis.org

1, 4, 74, 8457, 186282390, 430917181166219, 41151315877490090952542206046, 13991468824374967392702752173757116934238293984253807017
Offset: 1

Views

Author

Paul D. Hanna, Nov 21 2004

Keywords

Comments

These terms are doubly exponential. The next term has 106 digits. Positions of these large partial quotients are given by A100866. Hans Havermann has observed that the ratio of number-of-digits to position number is about 1.03, nearly equal to the reciprocal of Lochs constant.

Crossrefs

A100866 Positions of records in the continued fraction expansion A100864.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 21, 35, 71, 143, 291, 635, 1407, 2979, 6101, 12339, 25019, 50413, 101339, 202793, 405745, 811365, 1624043, 3249293, 6502711, 13011309
Offset: 1

Views

Author

Paul D. Hanna, Nov 21 2004

Keywords

Comments

Records form A100865 and are doubly exponential. These terms were independently computed by Robert G. Wilson v and Hans Havermann.

Crossrefs

Programs

  • PARI
    
    				
Previous Showing 11-14 of 14 results.