A146885
a(n) = 8*Sum_{k=0..n} 7^k.
Original entry on oeis.org
8, 64, 456, 3200, 22408, 156864, 1098056, 7686400, 53804808, 376633664, 2636435656, 18455049600, 129185347208, 904297430464, 6330082013256, 44310574092800, 310174018649608, 2171218130547264, 15198526913830856
Offset: 0
-
[n le 2 select 8^n else 8*Self(n-1) -7*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 12 2022
-
a[n_]:= Sum[8*7^m, {m,0,n}]; Table[a[n], {n,0,30}]
LinearRecurrence[{8,-7}, {8,64}, 41] (* G. C. Greubel, Oct 12 2022 *)
-
[(4/3)*(7^(n+1)-1) for n in range(41)] # G. C. Greubel, Oct 12 2022
A277874
a(n) is the last number in the (2n+1)-element alternating sequence of x/2 and (3x+1) iterations starting with A277215(n).
Original entry on oeis.org
0, 40, 16, 52, 160, 9232, 18952, 4372, 13120, 39364, 118096, 2480056, 5314408, 35075104, 9565936, 28697812, 86093440, 1807962280, 8523250756, 2324522932, 6973568800, 20920706404, 62762119216, 188286357652, 564859072960, 11862040532200, 25418658283288, 15251194969972, 45753584909920, 960825283108360
Offset: 0
a(0) = 0 = 2*(1*3^0 - 1) since it is the start and end of the first alternating sequence of 1 element and the maximum of its trajectory.
a(5) = 9232 = 2*(19*3^5 - 1) is the last element in the first alternating sequence of 11 elements [1214, 607, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232] that ends in the trajectory maximum.
-
(* we use function altdata[] from A277215 *)
a277874[n_]:=Map[#[[4]]&, altdata[2,n]]
Join[{0,40}, a277874[29]] (*sequence data*)
A373293
Number of edge covers of the fan graph F_{n,3}.
Original entry on oeis.org
16, 154, 1240, 9202, 66016, 466954, 3283240, 23026402, 161316016, 1129605754, 7908421240, 55362491602, 387548070016, 2712868376554, 18990174295240, 132931507044802, 930521410248016, 6513652454539354, 45595574930185240, 319169047756526002
Offset: 1
-
A373293[n_] := 4*7^n - 5*3^n + 3; Array[A373293, 25] (* or *)
LinearRecurrence[{11, -31, 21}, {16, 154, 1240}, 25] (* Paolo Xausa, Jun 24 2024 *)
-
def a_n(n):
return 4 * 7**n - 5 * 3**n + 3
A374450
Number of edge covers of the fan graph F_{n,4}.
Original entry on oeis.org
59, 1289, 23123, 376913, 5875499, 89719769, 1357012163, 20434006433, 307062808859, 4609813953449, 69174320548403, 1037804612461553, 15568397893099019, 233535269569297529, 3503094152437895843, 52546868050923710273, 788206211120541289979, 11823115499323514984009, 177346888817516282750483
Offset: 1
-
A374450[n_] := 8*15^n - 12*7^n + 9*3^n - 4; Array[A374450, 20] (* or *)
LinearRecurrence[{26, -196, 486, -315}, {59, 1289, 23123, 376913}, 20] (* Paolo Xausa, Jan 22 2025 *)
-
def a_n(n):
return 8 * 15**n - 12*7^n + 9 * 3**n + 3
Comments