cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A268434 Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0

Views

Author

Peter Luschny, Mar 07 2016

Keywords

Comments

0

Examples

			[1]
[0,        1]
[0,        2,         1]
[0,       10,        10,        1]
[0,      100,       140,       28,        1]
[0,     1700,      2900,      840,       60,      1]
[0,    44200,     85800,    31460,     3300,    110,     1]
[0,  1635400,   3476200,  1501500,   203060,  10010,   182,   1]
		

Crossrefs

Cf. A038207 (order 0), A111596 (order 1), A269946 (order 3).

Programs

  • Maple
    T := proc(n,k) option remember;
    if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
    T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
    seq(seq(T(n,k), k=0..n), n=0..8);
    # Alternatively with the P-transform (cf. A269941):
    A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
    (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
  • Mathematica
    T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
  • Sage
    #cached_function
    def T(n, k):
        if n==k: return 1
        if k<0 or k>n: return 0
        return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
    for n in range(8): print([T(n, k) for k in (0..n)])
    # Alternatively with the function PtransMatrix (cf. A269941):
    PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))

Formula

T(n,k) = (-1)^k*((2*n)!/(2*k)!)*P[n,k](s(n)) where P is the P-transform and s(n) = ((n-1)^2+1)/(n*(4*n-2)). The P-transform is defined in the link. Compare also the Sage and Maple implementations below.
T(n,k) = Sum_{j=k..n} A269944(n,j)*A269945(j,k).
T(n,1) = Product_{k=1..n} (k-1)^2+1 for n>=1 (cf. A101686).
T(n,n-1) = (n-1)*n*(2*n-1)/3 for n>=1 (cf. A006331).
Row sums: A269938.

A277352 a(n) = Product_{k=1..n} (2*k^2+1).

Original entry on oeis.org

1, 3, 27, 513, 16929, 863379, 63026667, 6239640033, 804913564257, 131200910973891, 26371383105752091, 6408246094697758113, 1851983121367652094657, 627822278143634060088723, 246734155310448185614868139, 111277104045012131712305530689
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2016

Keywords

Comments

Guadalupe proves that a(n) is not square for n > 0. - Charles R Greathouse IV, Mar 16 2023

Crossrefs

Programs

  • Mathematica
    Table[Product[2*k^2+1, {k, 1, n}], {n, 0, 15}]
  • PARI
    a(n)=prod(k=1,n,2*k^2+1) \\ Charles R Greathouse IV, Mar 16 2023

Formula

a(n) ~ 2^(n+3/2) * n^(2*n+1) * sinh(Pi/sqrt(2)) / exp(2*n).

A277353 a(n) = Product_{k=1..n} (3*k^2+1).

Original entry on oeis.org

1, 4, 52, 1456, 71344, 5422144, 591013696, 87470027008, 16881715212544, 4119138511860736, 1239860692070081536, 451309291913509679104, 195416923398549691052032, 99271797086463243054432256, 58471088483926850159060598784, 39526455815134550707524964777984
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[3*k^2+1, {k, 1, n}], {n, 0, 15}]

Formula

a(n) ~ 2*3^(n+1/2) * n^(2*n+1) * sinh(Pi/sqrt(3)) / exp(2*n).

A354054 a(n) = Product_{k=0..n} (k^6 + 1).

Original entry on oeis.org

1, 2, 130, 94900, 388805300, 6075471617800, 283463279271694600, 33349454806314869690000, 8742392830201411514885050000, 4646074730467898538293540742100000, 4646079376542629006192079035640742100000, 8230817672466612927467651920537784356160200000
Offset: 0

Views

Author

Vaclav Kotesovec, May 16 2022

Keywords

Crossrefs

Programs

  • Maple
    A354054 := proc(n)
        mul( k^6+1,k=0..n) ;
    end proc:
    seq(A354054(n),n=0..40) ; # R. J. Mathar, Jul 17 2023
  • Mathematica
    Table[Product[k^6 + 1, {k, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = prod(k=1, n, k^6+1);

Formula

a(n) ~ (2*sinh(2*Pi) - 4*sinh(Pi)*cos(sqrt(3)*Pi)) * n^(6*n + 3) / exp(6*n).
a(n) ~ A258871 * (n!)^6.

A228120 a(n) = (1^2 + 1)*(2^2 + 1)*(3^2 + 1)*...*(((prime(n) - 1)/2)^2 + 1).

Original entry on oeis.org

2, 10, 100, 44200, 1635400, 5315050000, 435834100000, 5370347780200000, 26078677338040210000000, 5893781078397087460000000, 142760638726203851727985000000000, 20723419838773203524537758570000000000, 9159751568737755957845689287940000000000, 2354514140744040168964234431464977000000000000
Offset: 2

Views

Author

Zhi-Wei Sun, Aug 11 2013

Keywords

Comments

The author has shown that a(n) == 2 (mod p_n) if p_n == 3 (mod 4). He has also established the following general theorem:
Let p be any odd prime and let d be any quadratic non-residue modulo p. Then we have the congruence
Product_{x=1..(p-1)/2} (x^2 - d) == 2*(-1)^((p+1)/2) (mod p).
This can be proved as follows: By Wilson's theorem we have (((p-1)/2)!)^2 == (-1)^((p+1)/2) (mod p), and thus we reduce the desired congruence to
Product_{0
Clearly
Product_{1
== Product_{j=2..(p-1)/2} (1 - j^2)
= (-1)^((p+1)/2)*(((p-1)/2)!)^2*(p+1)/(2*p-2)
== -1/2 (mod p),
and Product_{k=2..p-1} (1 - k) = (-1)^(p-2)*(p-2)! == -1 (mod p) by Wilson's theorem. Therefore (*) follows.

Examples

			a(3) = (1^1+1)*(2^2+1)*(3^2+1) = 100 and a(3) == 2 (mod 7).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Product[(x^2+1),{x,1,(Prime[n]-1)/2}]
    Table[a[n],{n,2,15}]

A262001 G.f.: 1/(1 - x*F'(x)/F(x)) where F(x) = Sum_{n>=0} x^n/n!*Product_{k=1..n} (k^2 + 1).

Original entry on oeis.org

1, 2, 10, 60, 400, 2900, 22700, 191600, 1746400, 17230000, 184348000, 2140118000, 26925784000, 366118706000, 5359236310000, 84077608400000, 1407341155720000, 25027454132360000, 471046698018440000, 9351091483806800000, 195213433887227200000, 4274234604872786800000, 97924306054031604400000
Offset: 0

Author

Paul D. Hanna, Sep 08 2015

Keywords

Comments

Cf. A262002, which is defined by: Sum_{n>=0} x^n/n! * Product_{k=1..n} (k^2+1) = exp( Sum_{n>=1} A262002(n)*x^n/n ).
Sum of all terms results in the 10-adic number x = ...5211383820350605156083728207423149062180073.

Examples

			O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 400*x^4 + 2900*x^5 + 22700*x^6 +...
where
1 - 1/A(x) =  2*x + 6*x^2 + 28*x^3 + 164*x^4 + 1132*x^5 + 8916*x^6 + 78608*x^7 + 765904*x^8 + 8170752*x^9 +...+ A262002(n)*x^n +...
Note that if we define the logarithmic series:
L(x) = 2*x + 6*x^2/2 + 28*x^3/3 + 164*x^4/4 + 1132*x^5/5 + 8916*x^6/6 + 78608*x^7/7 + 765904*x^8/8 +...+ A262002(n)*x^n/n +...
then exp(L(x)) = 1 + 2*x + 10*x^2/2! + 100*x^3/3! + 1700*x^4/4! + 44200*x^5/5! + 1635400*x^6/6! +...+ A101686(n)*x^n/n! +... where A101686(n) = Product_{k=1..n} (k^2+1).
		

Crossrefs

Cf. A262002.

Programs

  • PARI
    {a(n) = local(A=1,L=log(sum(m=0,n+1,x^m/m!*prod(k=1,m,k^2+1)) +x*O(x^n))); A=1/(1 - x*L'); polcoeff(A +x*O(x^n), n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: 1/(1 - G(x)) where G(x) is an o.g.f. of A262002.
a(n) == 0 (mod 10) for n>1.

A262002 L.g.f.: log( Sum_{n>=0} x^n/n! * Product_{k=1..n} (k^2 + 1) ).

Original entry on oeis.org

2, 6, 28, 164, 1132, 8916, 78608, 765904, 8170752, 94755776, 1187551088, 16004096144, 230910861872, 3553052000336, 58100442762368, 1006457051734784, 18415695160624192, 354980774078690496, 7190981550797464448, 152744987909458781824, 3395058926880381635712, 78814259879097446800256
Offset: 1

Author

Paul D. Hanna, Sep 08 2015

Keywords

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 28*x^3/3 + 164*x^4/4 + 1132*x^5/5 + 8916*x^6/6 + 78608*x^7/7 + 765904*x^8/8 + 8170752*x^9/9 + 94755776*x^10/10 +...
such that
exp(L(x)) = 1 + 2*x + 10*x^2/2! + 100*x^3/3! + 1700*x^4/4! + 44200*x^5/5! + 1635400*x^6/6! +...+ A101686(n)*x^n/n! +...
where A101686(n) = Product_{k=1..n} (k^2+1).
Also, given the o.g.f. A(x) = Sum_{n>=1} a(n)*x^n,
o.g.f.: A(x) = 2*x + 6*x^2 + 28*x^3 + 164*x^4 + 1132*x^5 + 8916*x^6 +...
then
1/(1 - A(x)) = 1 + 2*x + 10*x^2 + 60*x^3 + 400*x^4 + 2900*x^5 + 22700*x^6 + 191600*x^7 + 1746400*x^8 + 17230000*x^9 + 184348000*x^10 +...+ A262001(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = n*polcoeff( log(sum(m=0,n+1,x^m/m!*prod(k=1,m,k^2+1)) +x*O(x^n)), n)}
    for(n=1,30,print1(a(n),", "))

Formula

O.g.f.: 1 - 1/G(x) where G(x) is the g.f. of A262001.

A325050 a(n) = Product_{k=0..n} (k!^2 + 1).

Original entry on oeis.org

2, 4, 20, 740, 426980, 6148938980, 3187616116170980, 80970552724144881738980, 131634021973939424914920841290980, 17333817381151204925617274632152908873802980, 228254990993381085562170532497621436371926846785405002980
Offset: 0

Author

Vaclav Kotesovec, Mar 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k!^2 + 1, {k, 0, n}], {n, 0, 12}]
    Table[BarnesG[n+2]^2 * Product[1 + 1/k!^2, {k, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * n^(n^2 + 2*n + 5/6) * (2*Pi)^(n+1) / (A^2 * exp(3*n^2/2 + 2*n - 1/6)), where c = Product_{k>=0} (1 + 1/k!^2) = 5.1481781945902396880952694880498895... and A is the Glaisher-Kinkelin constant A074962.

A271266 a(n) = Product_{k=1..n} (k^2 + 21).

Original entry on oeis.org

1, 22, 550, 16500, 610500, 28083000, 1600731000, 112051170000, 9524349450000, 971483643900000, 117549520911900000, 16692031969489800000, 2754185274965817000000, 523295202243505230000000, 113555058886840634910000000, 27934544486162796187860000000, 7737868822667094544037220000000
Offset: 0

Author

Michel Marcus, Apr 03 2016

Keywords

Comments

Yin et al. prove that a(n) is never a square for n > 0.

Crossrefs

Programs

  • Mathematica
    Table[Product[k^2 + 21, {k, n}], {n, 0, 16}] (* Michael De Vlieger, Apr 03 2016 *)
  • PARI
    a(n) = prod(k=1, n, (k^2+21));

A324442 a(n) = Product_{i=1..n, j=1..n} (i^2 + j).

Original entry on oeis.org

1, 2, 180, 6652800, 402265543680000, 109211487076824381849600000, 295382703175843424854047228769075200000000, 15385012566245626089929288743828190926813939944652800000000000
Offset: 0

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^2+j, i=1..n), j=1..n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i^2 + j, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
    Table[Product[Pochhammer[1 + i^2, n], {i, 1, n}], {n, 1, 10}]

Formula

From Vaclav Kotesovec, Dec 27 2023: (Start)
a(n) ~ c * n^(2*n^2 + n/2 - 1/4) / exp(2*n^2 - 2*Pi*n^(3/2)/3 - Pi*sqrt(n)/2), where c = 0.31906...
For n>1, a(n) = a(n-1) * Gamma(n - i*sqrt(n)) * Gamma(n + i*sqrt(n)) * Gamma(n^2 + n + 1) * sinh(Pi*sqrt(n)) / (Pi * n^(5/2) * Gamma(n^2)), where i is the imaginary unit. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
Previous Showing 21-30 of 30 results.