A340887
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * 3^(n-k-1) * a(k).
Original entry on oeis.org
1, 1, 7, 99, 2511, 99531, 5680125, 441226521, 44766049599, 5748319130283, 911271895816077, 174799606363478361, 39903413238125862309, 10690643656077551475921, 3321750648705212259711063, 1184831658624977151885176859, 480843465699932167142334581919
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 3^(n - k - 1) a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
nmax = 16; CoefficientList[Series[3/(4 - BesselI[0, 2 Sqrt[3 x]]), {x, 0, nmax}], x] Range[0, nmax]!^2
A340888
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * 4^(n-k-1) * a(k).
Original entry on oeis.org
1, 1, 8, 124, 3456, 150656, 9453056, 807373568, 90066059264, 12716049596416, 2216452086693888, 467465806422867968, 117332539562036035584, 34562989958399757647872, 11807922834511544081973248, 4630865359842075866336067584, 2066370767828213666946077425664
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 4^(n - k - 1) a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
nmax = 16; CoefficientList[Series[4/(5 - BesselI[0, 4 Sqrt[x]]), {x, 0, nmax}], x] Range[0, nmax]!^2
A352467
a(0) = 1; a(n) = Sum_{k=1..n} binomial(2*n,2*k)^2 * a(n-k).
Original entry on oeis.org
1, 1, 37, 8551, 6886069, 14323022551, 64085654997739, 545107167737695109, 8062740187879748199029, 193866963305030079530064391, 7188682292472952994057436691387, 394013888612808806428687953794890229, 30829606055995735731623164115609901072859
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n, 2 k]^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 12}]
nmax = 24; Take[CoefficientList[Series[1/(1 - Sum[x^(2 k)/(2 k)!^2, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!^2, {1, -1, 2}]
A352470
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1)^2 * a(n-2*k-1).
Original entry on oeis.org
1, 1, 4, 37, 608, 15601, 576472, 28993693, 1904637184, 158352856129, 16253786050904, 2018684970206653, 298373110433984192, 51757706826973479697, 10412613242348421164400, 2404755328388872932588037, 631887117002962512609921024, 187441600433239155105076467457
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 2 k + 1]^2 a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[1/(1 - Sum[x^(2 k + 1)/(2 k + 1)!^2, {k, 0, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!^2
A335946
a(n) = 1 + Sum_{k=0..n-1} binomial(n,k)^2 * a(k).
Original entry on oeis.org
1, 2, 10, 110, 2154, 65902, 2903446, 174109546, 13636888810, 1351801926542, 165434393561910, 24497621303302666, 4317170011370444982, 892891315599103615082, 214174328063904077240962, 58974283594413521123672110, 18476316023495768160707616490
Offset: 0
-
a[n_] := a[n] = 1 + Sum[Binomial[n, k]^2 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
nmax = 16; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(2 - BesselI[0, 2 Sqrt[x]]), {x, 0, nmax}], x] Range[0, nmax]!^2
A336228
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * (n-k) * a(k).
Original entry on oeis.org
1, 1, 6, 75, 1684, 59005, 2977566, 204512875, 18346977608, 2083115635065, 291996210173410, 49525220811387871, 9996609976117991436, 2368117724291275331869, 650613686811158069472942, 205196311013650099853516115, 73633144885479474283911225616
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 (n - k) a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
nmax = 16; CoefficientList[Series[1/(1 - Sqrt[x] BesselI[1, 2 Sqrt[x]]), {x, 0, nmax}], x] Range[0, nmax]!^2
A336243
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * (n-k-1)! * a(k).
Original entry on oeis.org
1, 1, 5, 56, 1114, 34624, 1549648, 94402356, 7511324448, 756406501200, 94039208461584, 14146468841290752, 2532586289913605088, 532113978869395649856, 129662518122880634567232, 36270261084908437106586624, 11543682123659880166705099776
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
nmax = 16; CoefficientList[Series[1/(1 - Sum[x^k/(k k!), {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!^2
nmax = 16; Assuming[x > 0, CoefficientList[Series[1/(1 + EulerGamma - ExpIntegralEi[x] + Log[x]), {x, 0, nmax}], x]] Range[0, nmax]!^2
A102224
Column 0 of the matrix square of A102220, which equals the lower triangular matrix: [2*I - A008459]^(-1).
Original entry on oeis.org
1, 2, 14, 200, 4814, 174752, 8909168, 606818060, 53211837134, 5838211285616, 783434682568664, 126221710572107900, 24043148814317769584, 5344827109234104188348, 1371307353540074156012828
Offset: 0
Given A102221 = [1,1,5,55,1077,32951,1451723,87054773,...], then this sequence results from a type of self-convolution of A102221:
a(2) = 14 = 1^2*1*5 + 2^2*1*1 + 1^2*5*1,
a(3) = 200 = 1^2*1*55 + 3^2*1*5 + 3^2*5*1 + 1^2*55*1.
-
{a(n)=(matrix(n+1,n+1,i,j,if(i==j,2,0)-binomial(i-1,j-1)^2)^-2)[n+1,1]}
A336217
a(0) = 1; a(n) = 2 * Sum_{k=0..n-1} binomial(n,k)^2 * a(k).
Original entry on oeis.org
1, 2, 18, 362, 12946, 723402, 58208490, 6375093258, 911949196434, 165104835435146, 36903191037412618, 9980525774650881738, 3212329170232153022314, 1213419234370490738427722, 531582989226188067128503722, 267336170027296964096123899962
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[n, k]^2 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]
nmax = 15; CoefficientList[Series[1/(1 - 2 Sum[x^k/(k!)^2, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!^2
A362589
Triangular array read by rows. T(n,k) is the number of ways to form an ordered pair of n-permutations and then choose a size k subset of its common descent set, n >= 0, 0 <= k <= max{0,n-1}.
Original entry on oeis.org
1, 1, 4, 1, 36, 18, 1, 576, 432, 68, 1, 14400, 14400, 3900, 250, 1, 518400, 648000, 252000, 32400, 922, 1, 25401600, 38102400, 19404000, 3880800, 262542, 3430, 1, 1625702400, 2844979200, 1795046400, 493920000, 56664384, 2119152, 12868, 1
Offset: 0
Triangle begins:
1;
1;
4, 1;
36, 18, 1;
576, 432, 68, 1;
14400, 14400, 3900, 250, 1;
...
-
nn = 8; B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[u/(u + 1 - e[u z]), {z, 0, nn}], {z, u}]] // Flatten
Comments