cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A181790 Numbers k such that k concatenated with itself is a pandigital biperiod square.

Original entry on oeis.org

183673469387755102041, 326530612244897959184, 734693877551020408164, 132231404958677685950413223140496, 206611570247933884297520661157025, 297520661157024793388429752066116, 404958677685950413223140495867769
Offset: 1

Views

Author

William Rex Marshall, Nov 12 2010

Keywords

References

  • R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A181790_gen(): # generator of terms
        for j in count(9):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(0,a,all_roots=True)):
                if a*b <= k**2 < a*(a-1) and len(set(str(m:=k**2//a))) == 10:
                        yield m
    A181790_list = list(islice(A181790_gen(),20)) # Chai Wah Wu, Mar 23 2024

A115529 Numbers k such that the concatenation of 2*k with k gives a square.

Original entry on oeis.org

1632653061224489796, 3673469387755102041, 6530612244897959184, 108166576527852893455922120064900, 130881557598702001081665765278529, 155759870200108166576527852893456, 182801514332071389940508382909681
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

Numbers of the form k = a*b^2 where 10^(d-1) <= k < 10^d and (2*10^d+1)/a is a square. - Robert Israel, Jan 13 2021

Examples

			3265306122448979592_1632653061224489796 = 5714285714285714286^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(d) local R,q,F,G,s,t,a,u,i;
       q:= 2*10^d+1;
       F:= ifactors(q)[2];
       G:= map(t -> [t[1],floor(t[2]/2)], F);
       s:= mul(t[1]^t[2],t=G);
       R:= NULL:
       for a in numtheory:-divisors(s) do
         u:= q/a^2;
         R:= R, seq(i^2*u, i=ceil(sqrt(10^(d-1)/u))..floor(sqrt((10^d-1)/u)))
       od;
       R
    end proc:
    seq(f(d),d=1..33); # Robert Israel, Jan 13 2021

A115531 Numbers k such that the concatenation of k with 3*k gives a square.

Original entry on oeis.org

816326530612244897959183673469388, 1836734693877551020408163265306123, 3265306122448979591836734693877552, 3746097814776274713839750260145681581685744016649323621228
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

If 3+10^m is not squarefree, say 3+10^m = u^2*v where v is squarefree, then the terms with length m are t^2*v where 10^m > 3*t^2*v >= 10^(m-1). The first m for which 3+10^m is not squarefree are 34, 59, 60, 61, 67. - Robert Israel, Aug 07 2019
Since 3+10^m is divisible by 7^2 for m = 34 + 42*k, the sequence contains 4*(3+10^m)/49, 9*(3+10^m)/49 and 16*(3+10^m)/49 for such m, and in particular is infinite. - Robert Israel, Aug 08 2019

Crossrefs

Programs

  • Maple
    Res:= NULL:
    for m from 1 to 67 do
    if not numtheory:-issqrfree(3+10^m) then
       F:= select(t -> t[2]=1, ifactors(3+10^m)[2]);
       v:= mul(t[1], t=F);
       Res:= Res, seq(t^2*v, t = ceil(sqrt(10^(m-1)/(3*v))) .. floor(sqrt(10^m/(3*v))))
    fi
    od:
    Res;  # Robert Israel, Aug 07 2019

A115555 Numbers k such that the concatenation of 9*k with k gives a square.

Original entry on oeis.org

1836734693877551020408163265306122449, 7346938775510204081632653061224489796, 15311909262759924385633270321361058601134215500945179584121, 27221172022684310018903591682419659735349716446124763705104
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Crossrefs

A107678 Numbers NM associated with A107677.

Original entry on oeis.org

74, 8021, 9704, 165836, 352649, 997004, 19768025, 20657936, 29767025, 30856916, 98000201, 99970004, 1203287969, 1975280249, 3086569136, 4265757344, 8143718564, 9999700004, 48125951876, 81632918369, 82205917796, 87792912209
Offset: 1

Views

Author

Lekraj Beedassy, May 20 2005

Keywords

Comments

Leading zeros are omitted.

Crossrefs

Extensions

Edited, corrected and extended by Klaus Brockhaus, May 22 2005

A115530 Numbers k such that k^2 is the concatenation of two numbers 2*m and m.

Original entry on oeis.org

5714285714285714286, 8571428571428571429, 11428571428571428572, 465116279069767441860465116279070, 511627906976744186046511627906977, 558139534883720930232558139534884, 604651162790697674418604651162791
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			5714285714285714286^2 = 3265306122448979592_1632653061224489796.
		

Crossrefs

Extensions

Definition modified by Georg Fischer, Jul 25 2019

A115532 Numbers k such that k^2 is the concatenation of two numbers m and 3*m.

Original entry on oeis.org

2857142857142857142857142857142858, 4285714285714285714285714285714287, 5714285714285714285714285714285716, 19354838709677419354838709677419354838709677419354838709678
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Crossrefs

A115533 Numbers k such that the concatenation of 3*k with k gives a square.

Original entry on oeis.org

24489796, 55102041, 97959184, 15976331361, 28402366864, 44378698225, 63905325444, 86982248521, 24489795918367346938775510204081632653061224489796
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			73469388_24489796 = 85714286^2.
		

Crossrefs

A115534 Numbers k such that k^2 is the concatenation of two numbers 3*m and m.

Original entry on oeis.org

85714286, 128571429, 171428572, 69230769231, 92307692308, 115384615385, 138461538462, 161538461539, 85714285714285714285714285714285714285714285714286
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			85714286^2 = 73469388_24489796.
		

Crossrefs

Extensions

Definition modified by Georg Fischer, Jul 26 2019

A115535 Numbers k such that the concatenation of k with 4*k gives a square.

Original entry on oeis.org

25721, 28836, 32129, 35600, 39249, 43076, 47081, 51264, 55625, 60164, 64881, 69776, 74849, 80100, 85529, 91136, 96921, 102884, 109025, 115344, 121841, 128516, 135369, 142400, 149609, 156996, 164561, 172304, 180225, 188324, 196601, 205056
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

Not the same as P(n) = 89*n^2 + 2848*n + 22784: P(n) = a(n) for a < 37, but a(37) = 3698225. - Charles R Greathouse IV, Jul 28 2010

Examples

			25721_102884 = 160378^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250000],IntegerQ[Sqrt[#*10^IntegerLength[4*#]+4*#]]&] (* Harvey P. Dale, Jan 04 2019 *)
Previous Showing 21-30 of 48 results. Next