cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A103157 Number of ways to choose 4 distinct points from an (n+1) X (n+1) X (n+1) lattice cube.

Original entry on oeis.org

70, 17550, 635376, 9691375, 88201170, 566685735, 2829877120, 11671285626, 41417124750, 130179173740, 370215608400, 968104633665, 2357084537626, 5396491792125, 11710951848960, 24246290643940, 48151733324310, 92140804597626, 170538695998000, 306294282269955
Offset: 1

Views

Author

Hugo Pfoertner, Feb 12 2005

Keywords

Crossrefs

Cf. 4-point objects in lattice cube: A103158 tetrahedra, A103656 triangular pyramids, A103657 number of different volumes, A103658 volume=0, A103659, A103660 most frequent volumes, A103661 smallest not occurring volume.

Formula

a(n) = binomial((n+1)^3, 4).
G.f.: -x*(x^10 + 317*x^9 + 23193*x^8 + 435669*x^7 + 2747685*x^6 + 6738399*x^5 + 6803373*x^4 + 2780367*x^3 + 412686*x^2 + 16640*x + 70)/(x -1)^13. - Colin Barker, Nov 16 2012

A103656 a(n) = (1/2)*number of non-degenerate triangular pyramids that can be formed using 4 distinct points chosen from an (n+1) X (n+1) X (n+1) lattice cube.

Original entry on oeis.org

29, 7316, 285400, 4508716, 42071257, 273611708, 1379620392, 5723597124, 20398039209, 64302648044, 183316772048, 480140522044, 1170651602665
Offset: 1

Views

Author

Hugo Pfoertner, Feb 14 2005

Keywords

Comments

The observed growth rate of CPU time required to compute more terms is approximately ~ n^10.5.

Examples

			a(1)=29: Only 58 of the A103157(1)=70 possible ways to choose 4 distinct points from the 8 vertices of a cube result in pyramids with volume > 0: 2 regular tetrahedra of volume=1/3 and 56 triangular pyramids of volume=1/6. The remaining A103658(1)=12 configurations result in objects with volume=0. Therefore a(1)=(1/2)*(A103157(1)-A103658(1))=58/2=29.
		

Crossrefs

Cf. A103157 binomial((n+1)^3, 4), A103158 tetrahedra in lattice cube, A103658 4-point objects with volume=0 in lattice cube, A103426 non-degenerate triangles in lattice cube.

A103657 Number of different volumes assumed by triangular pyramids with their 4 vertices chosen from distinct points of an (n+1)X(n+1)X(n+1) lattice cube, including degenerate objects with volume=0.

Original entry on oeis.org

3, 13, 39, 90, 178, 309, 503, 756, 1096, 1523, 2059, 2683, 3469, 4355, 5406
Offset: 1

Views

Author

Hugo Pfoertner, Feb 17 2005

Keywords

Examples

			a(1)=3 because 4-point objects with 3 different volumes can be built using the vertices of a cube: 2 regular tetrahedra (e.g. [(0,0,0),(0,1,1),(1,0,1),(1,1,0)]) with volume 1/3, 56 pyramids with volume 1/6 and 12 objects with volume=0, e.g. the faces of the cube.
a(2)=13: The A103157(2)=17550 4-point objects that can selected from the 27 points of a 3X3X3 lattice cube fall into 13 different volume classes (6*V,occurrences):
(0,2918), (1,3688), (2,5272), (3,1272), (4,2788), (5,272), (6,684), (7,72), (8,494), (9,16), (10,48), (12,24), (16,2).
A103658(n) gives the occurrence counts of objects with V=0 (i.e. A103658(2)=2918).
A103659(n) gives 6*V of the most frequently occurring volume and A103660(n) gives the corresponding occurrence count, divided by 2. Therefore A103659(2)=2 and A103660(2)=2636.
A103661(n) gives the smallest value of 6*V not occurring in the list of 4-point object volumes, i.e. A103661(2)=11.
		

Crossrefs

Cf. A103157 binomial((n+1)^3, 4), A103158 tetrahedra in lattice cube, A103656, A103658, A103659, A103660, A103661.

A334881 Number of squares in 3-dimensional space whose four vertices have coordinates (x,y,z) in the set {1,...,n}.

Original entry on oeis.org

0, 0, 6, 54, 240, 810, 2274, 5304, 10752, 19992, 34854, 57774, 91200, 139338, 206394, 296832, 417120, 575556, 779238, 1037514, 1359792, 1760694, 2251362, 2845140, 3554976, 4404876, 5416278, 6605946, 7996896, 9621678, 11500962, 13667772, 16143552, 18973608, 22190406
Offset: 0

Views

Author

Peter Kagey, May 14 2020

Keywords

Comments

a(n) >= 3*n*A002415(n).

Examples

			For n = 5, one such square has vertex set {(2,1,1), (5,4,1), (4,5,5), (1,2,5)}.
		

Crossrefs

Cf. A002415 (squares in square grid), A098928 (cubes in cube grid).

Extensions

a(7)-a(12) from Pontus von Brömssen, May 15 2020
a(13)-a(20) from Peter Kagey, Jul 29 2020 via Mathematics Stack Exchange link
Terms a(21) and beyond from Zachary Kaplan, Sep 01 2020, via Mathematics Stack Exchange link

A178797 Number of regular octahedra that can be formed using the points in an (n+1)X(n+1)X(n+1) lattice cube.

Original entry on oeis.org

0, 1, 8, 32, 104, 261, 544, 1000, 1696, 2759, 4296, 6434, 9352, 13243, 18304, 24774, 32960, 43223, 55976, 71752, 90936, 113973, 141312, 173436, 210960, 254587, 305000, 364406, 432824, 511421, 600992, 702556, 817200, 946131, 1090392, 1251238
Offset: 1

Views

Author

Eugen J. Ionascu, Jun 15 2010

Keywords

Examples

			a(2)=1 because there is 1 way to form a regular octahedron using points of a {0,1,2}^3 lattice cube.
		

Crossrefs

Extensions

Edited by Ray Chandler, Jul 27 2010

A338791 a(n) is the number of Platonic solids in three dimensions with all vertices (x,y,z) in the set {1,2,...,n}^3.

Original entry on oeis.org

0, 0, 3, 28, 116, 340, 847, 1832, 3570, 6440, 10889, 17518, 26966, 40002, 57601, 80868, 111186, 150032, 199147, 260456, 336080, 428290, 539709, 673130, 831436, 1018154, 1237155, 1492352, 1787780, 2129250, 2521323, 2969584, 3479302, 4056636, 4707661, 5438808
Offset: 0

Views

Author

Peter Kagey, Dec 05 2020

Keywords

Comments

Dodecahedra and icosahedra with integer coordinates cannot be formed in Euclidean space (of any dimension) because pentagons with integer coordinates cannot be formed in Euclidean space, and both polyhedra contain a subset of vertices that form a pentagon. Therefore, this sequence counts the regular tetrahedra, cubes, and octahedra in the bounded cubic lattice.

Crossrefs

Cf. A098928 (cubes), A103158 (tetrahedra), A178797 (octahedra), A338323 (regular polygons).

Formula

a(n) = A098928(n) + 2*A103158(n-1) + A178797(n-1) for n >= 2.
Previous Showing 11-16 of 16 results.