cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A373124 Sum of indices of primes between powers of 2.

Original entry on oeis.org

1, 2, 7, 11, 45, 105, 325, 989, 3268, 10125, 33017, 111435, 369576, 1277044, 4362878, 15233325, 53647473, 189461874, 676856245, 2422723580, 8743378141, 31684991912, 115347765988, 421763257890, 1548503690949, 5702720842940, 21074884894536, 78123777847065
Offset: 0

Views

Author

Gus Wiseman, May 31 2024

Keywords

Comments

Sum of k such that 2^n+1 <= prime(k) <= 2^(n+1).

Examples

			Row-sums of the sequence of all positive integers as a triangle with row-lengths A036378:
   1
   2
   3  4
   5  6
   7  8  9 10 11
  12 13 14 15 16 17 18
  19 20 21 22 23 24 25 26 27 28 29 30 31
  32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
		

Crossrefs

For indices of primes between powers of 2:
- sum A373124 (this sequence)
- length A036378
- min A372684 (except initial terms), delta A092131
- max A007053
For primes between powers of 2:
- sum A293697
- length A036378
- min A104080 or A014210
- max A014234, delta A013603
For squarefree numbers between powers of 2:
- sum A373123
- length A077643, run-lengths of A372475
- min A372683, delta A373125, indices A372540
- max A372889, delta A373126, indices A143658

Programs

  • Mathematica
    Table[Total[PrimePi/@Select[Range[2^(n-1)+1,2^n],PrimeQ]],{n,10}]
  • PARI
    ip(n) = primepi(1<A007053
    t(n) = n*(n+1)/2; \\ A000217
    a(n) = t(ip(n+1)) - t(ip(n)); \\ Michel Marcus, May 31 2024

A353738 Length of longest n-digit optimal prime ladder (base 2).

Original entry on oeis.org

0, 2, 2, 1, 5, 3, 7, 5, 15, 15, 19, 24, 39, 48, 35, 64, 57, 51, 59, 61, 67, 61, 61
Offset: 1

Views

Author

Michael S. Branicky, May 09 2022

Keywords

Comments

A prime ladder (in base b) starts with a prime, ends with a prime, and each step produces a new prime by changing exactly one base-b digit.
A shortest such construct between two given primes is optimal.
Analogous to a word ladder (see Wikipedia link).
Here, n-digit primes do not allow leading 0 digits.
If all n-digit primes are disconnected, a(n) = 1; if there are no n-digit primes, a(n) = 0.

Examples

			There are no 1-digit primes in base 2, so a(1) = 0.
The 2-digit optimal prime ladder 10 - 11 is tied for the longest amongst 2-digit primes in binary, so a(2) = 2.
The 3-digit optimal prime ladder 101 - 111 is tied for the longest amongst 3-digit primes in binary, so a(3) = 2.
The only 4-digit primes in binary, 1011 and 1101, are disconnected, so a(3) = 1.
The 5-digit optimal prime ladder 10001 - 10011 - 10111 - 11111 - 11101 is tied for the longest amongst 5-digit primes in binary, so a(5) = 5.
		

Crossrefs

Formula

a(n) is the number of vertices of a longest shortest path in the graph G = (V, E), where V = {n-digit base-2 primes} and E = {(v, w) | H_2(v, w) = 1}, where H_b is the Hamming distance in base b.

Extensions

a(23) from Michael S. Branicky, May 21 2022

A367966 Smallest Sophie Germain prime >= 2^n.

Original entry on oeis.org

2, 2, 5, 11, 23, 41, 83, 131, 281, 593, 1031, 2063, 4211, 8243, 16421, 32771, 65633, 131321, 262193, 524351, 1048889, 2097629, 4194581, 8388953, 16777259, 33554771, 67108913, 134218433, 268435631, 536871311, 1073741891, 2147483693, 4294967681, 8589934631, 17179869659
Offset: 0

Views

Author

Andrei Lapets, Dec 06 2023

Keywords

Examples

			For n = 0, a(0) = 2 because 2 is prime, 2*(2) + 1 = 5 is prime, 2 >= 2^0 where 2^0 = 1, and 1 is not prime.
For n = 1, a(1) = 2 because 2 is prime, 2*(2) + 1 = 5 is prime, 2 >= 2^1 where 2^1 = 2.
For n = 2, a(2) = 5 because 5 is prime, 2*(5) + 1 = 11 is prime, 5 >= 2^2 where 2^2 = 4, and 4 is not prime.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local p; for p from 2^n
          while not andmap(isprime, [p, 2*p+1]) do od; p
        end:
    seq(a(n), n=0..44);  # Alois P. Heinz, Dec 13 2023
  • Mathematica
    a={}; nmax=35; For[n=0, n<=nmax, n++, k=2^n; While[!PrimeQ[k] || !PrimeQ[2k+1], k++]; AppendTo[a,k]]; a (* Stefano Spezia, Dec 10 2023 *)
  • PARI
    a(n) = forprime(p=2^n, , if (isprime(2*p+1), return(p))); \\ Michel Marcus, Dec 12 2023

Formula

Apparently a(n) = (A111671(n) - 1)/2 for n>=2. - Hugo Pfoertner, Dec 13 2023

A340959 Table read by antidiagonals of the smallest prime >= n^k, n >= 1 and k >= 0.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 3, 5, 2, 2, 5, 11, 11, 2, 2, 5, 17, 29, 17, 2, 2, 7, 29, 67, 83, 37, 2, 2, 7, 37, 127, 257, 251, 67, 2, 2, 11, 53, 223, 631, 1031, 733, 131, 2, 2, 11, 67, 347, 1297, 3137, 4099, 2203, 257, 2, 2, 11, 83, 521, 2411, 7789, 15629, 16411, 6563
Offset: 1

Views

Author

Donald S. McDonald, Jan 31 2021

Keywords

Examples

			Table begins:
  2, 2,  2,   2,   2,    2, ...
  2, 2,  5,  11,  17,   37, ...
  2, 3, 11,  29,  83,  251, ...
  2, 5, 17,  67, 257, 1031, ...
  2, 5, 29, 127, 631, 3137, ...
  ...;
yielding the triangle:
  2;
  2, 2;
  2, 2,  2;
  2, 3,  5,  2;
  2, 5, 11, 11,  2;
  2, 5, 17, 29, 17, 2;
  ...
		

Crossrefs

Cf. A104080 (n=2), A104081 (n=3), A104082 (n=4), A104083 (n=5), A104084 (n=7).

Programs

  • Mathematica
    T[n_,k_]:=NextPrime[n^k-1];Flatten[Table[T[n-k,k],{n,11},{k,0,n-1}]] (* Stefano Spezia, Feb 01 2021 *)
  • PARI
    T(n,k) = nextprime(n^k); \\ Michel Marcus, Feb 01 2021

Formula

T(n,k) = next_prime(n^k-1).
Previous Showing 31-34 of 34 results.