cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A104433 Number of ways to split 1, 2, 3, ..., 7n into n arithmetic progressions each with 7 terms.

Original entry on oeis.org

1, 1, 2, 4, 10, 20, 56, 117, 323, 745, 1896, 4242, 12883, 29108, 75725, 183366, 504215, 1176776
Offset: 0

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

Extensions

a(0), a(11)-a(17) from Alois P. Heinz, Nov 18 2020

A104435 Number of ways to split 1, 2, 3, ..., 2n into 2 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Comments

The common difference in an arithmetic progression must be a positive integer. - David A. Corneth, Apr 14 2024

Examples

			From _R. J. Mathar_, Apr 14 2024: (Start)
a(2)=3 offers 3 ways of splitting (1,2,3,4): {(1,2),(3,4)}, {(1,3),(2,4)}, {(1,4),(2,3)}.
a(n)=2 for n>=3 because there are at least the two ways of splitting (1,2,..,2n) into the even and odd numbers. (End)
		

Crossrefs

Programs

Formula

a(1) = 1, a(2) = 3, a(n) = 2 for n >= 3. Proof of the latter: if the common difference in an arithmetic progression, starting with a number at least 1, is at least 3 then the largest term in that arithmetic progression is at least 1 + 3*(n-1) = 3*n - 2. But 3*n - 2 > 2*n for n > 2. - David A. Corneth, Apr 14 2024
G.f.: x*(1 + 2*x - x^2)/(1 - x). - Stefano Spezia, Apr 14 2024

Extensions

More terms from David A. Corneth, Apr 14 2024

A104437 Number of ways to split 1, 2, 3, ..., 4n into 4 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 105, 15, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A104438 Number of ways to split 1, 2, 3, ..., 5n into 5 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 945, 55, 23, 21, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A104439 Number of ways to split 1, 2, 3, ..., 6n into 6 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 10395, 232, 68, 59, 57, 56, 56, 56, 56, 56, 56, 56, 56, 56
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A104440 Number of ways to split 1, 2, 3, ..., 7n into 7 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 135135, 1161, 161, 125, 119, 117, 116, 116, 116, 116, 116, 116, 116, 116, 116
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A104441 Number of ways to split 1, 2, 3, ..., 8n into 8 arithmetic progressions each with n terms.

Original entry on oeis.org

1, 2027025, 6643, 488, 349, 329, 323, 321, 320, 320, 320, 320, 320, 320, 320, 320
Offset: 1

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Crossrefs

A202951 Number of Nickerson-type partitions of [1,...,3n] into triples satisfying x+y=z.

Original entry on oeis.org

1, 1, 0, 0, 6, 10, 0, 0, 700
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2011

Keywords

Comments

Perhaps an incorrect version of A004075? Sequence values are from p. 51 of Nowakowski. - Martin Fuller, Jul 06 2025

Crossrefs

A202952 A108235(n)-A202951(n).

Original entry on oeis.org

0, 0, 0, 0, 2, 11, 0, 0, 2300
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2011

Keywords

Crossrefs

A334250 Number of set partitions of [3n] into 3-element subsets {i, i+k, i+2k} with 1<=k<=n.

Original entry on oeis.org

1, 1, 2, 4, 12, 35, 129, 567, 2920, 16110, 103467, 717608, 5748214, 47937957, 441139750, 4319093093, 45963368076, 510202534002, 6150655137844, 76789781005325, 1028853084775725, 14294680087131380
Offset: 0

Views

Author

Alois P. Heinz, Apr 20 2020

Keywords

Comments

Differs from A331621 first at n=7.

Examples

			a(2) = 2: 123|456, 135|246.
a(3) = 4: 123|456|789, 123|468|579, 135|246|789, 147|258|369.
		

Crossrefs

Cf. A014307 (the same for 2-element subsets), A025035, A059108, A104429 (where k is not restricted), A285527, A331621, A337520.
Main diagonal of A360334.

Programs

  • Maple
    b:= proc(s, t) option remember; `if`(s={}, 1, (m-> add(
         `if`({m-j, m-2*j} minus s={}, b(s minus {m, m-j, m-2*j},
                t), 0), j=1..min(t, iquo(m-1, 2))))(max(s)))
        end:
    a:= proc(n) option remember; forget(b): b({$1..3*n}, n) end:
    seq(a(n), n=0..12);
  • Mathematica
    b[s_List, t_] := b[s, t] = If[s == {}, 1, Function[m, Sum[If[{m - j, m - 2j} ~Complement~ s == {}, b[s ~Complement~ {m, m - j, m - 2j}, t], 0], {j, 1, Min[t, Quotient[m - 1, 2]]}]][Max[s]]];
    a[n_] := a[n] = b[Range[3n], n];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, May 10 2020, after Maple *)

Formula

a(n) <= A104429(n) <= A025035(n).

Extensions

a(17)-a(21) from Martin Fuller, Jul 19 2025
Previous Showing 21-30 of 39 results. Next