cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A107387 Expansion of x*(1-2*x-x^2)/( (1-x)*(1+x)*(1-3*x+x^2)).

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 16, 41, 105, 274, 715, 1871, 4896, 12817, 33553, 87842, 229971, 602071, 1576240, 4126649, 10803705, 28284466, 74049691, 193864607, 507544128, 1328767777, 3478759201, 9107509826, 23843770275, 62423800999, 163427632720, 427859097161
Offset: 0

Views

Author

Roger L. Bagula, May 24 2005, corrected Sep 04 2008

Keywords

Comments

The real roots of the denominator function are x = +-1, A104457 and A132338.

Programs

  • Magma
    I:=[ 0,1,1,2]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-3) +Self(n-4): n in [1..40]] // Vincenzo Librandi, Aug 22 2012
  • Mathematica
    LinearRecurrence[{3,0,-3,1},{0,1,1,2},50] (* Vincenzo Librandi, Aug 22 2012 *)
    CoefficientList[Series[x (1-2x-x^2)/((1-x)(1+x)(1-3x+x^2)),{x,0,40}],x] (* Harvey P. Dale, May 31 2020 *)

Formula

a(n) = 1 + A001654(n-2).

Extensions

Replaced with a regular sequence by R. J. Mathar, Aug 31 2011

A168259 Eigensequence of triangle A168258.

Original entry on oeis.org

1, 2, 6, 14, 38, 96, 254, 656, 1724, 4492, 11776, 30774, 80608, 210892, 552226, 1445374, 3784308, 9906482, 25936206, 67899344, 177764618, 465387226, 1218404344, 3189806746, 8351034954, 21863248282, 57238759726, 149852900454, 392320072078, 1027106974446, 2689001192594, 7039895709776
Offset: 1

Views

Author

Gary W. Adamson, Nov 21 2009

Keywords

Comments

Eigensequence of triangle A168258, derived from the following operation: Shift down triangle A168258, so that rows begin [1; 1; 1,1; 2,2,1; ...] = triangle M. Then take lim_{n->oo} M^n, resulting in a left-shifted vector. Delete the first 1, getting (1, 2, 6, 14, 38, 96, ...) = this sequence.
a(n)/a(n-1) apparently tends to phi^2=A104457. a(19)/a(18) = 2.618104...

Crossrefs

Programs

  • PARI
    T(n, k) = if(binomial(k, n-k)>0, 1, 0); \\ A101688
    mat(nn) = my(ma=matrix(nn+1, nn, n, k, T(n-1, k-1)), mb=matrix(nn, nn, n, k, n>=k)); ma*mb; \\ A168258
    shiftm(m, nn) = my(shm=matrix(nn+1, nn+1)); shm[1,1]=1; for (n=1, nn, for(k=1, nn, shm[n+1,k] = m[n,k];);); shm;
    lista(nn) = my(m=mat(nn), shm=shiftm(m, nn), shmnn=shm^nn); vector(nn, k, shmnn[k+1, 1]); \\ Michel Marcus, Nov 19 2022

Extensions

Edited and more terms from Michel Marcus, Nov 19 2022

A168317 Eigensequence of triangle A168316.

Original entry on oeis.org

1, 1, 3, 6, 16, 39, 103, 263, 690, 1791, 4693, 12247, 32073, 83869, 219598, 574658, 1504540, 3938272, 10310703
Offset: 1

Views

Author

Gary W. Adamson, Nov 22 2009

Keywords

Comments

Conjectured convergent of a(n)/a(n-1) = phi^2 = 2.6180339... E.g.: a(19)/a(18) = 10310703/3938272 = 2.6180779....

Crossrefs

Formula

Equals lim_{n->oo} M^2, the left shifted vector considered as a sequence where M = triangle A168316 as an infinite lower triangular matrix, then shifted down one row, and inserting a "1" at top.

A180014 Decimal expansion of Pi/(2*phi^2).

Original entry on oeis.org

5, 9, 9, 9, 9, 0, 8, 0, 7, 4, 3, 2, 1, 6, 3, 3, 3, 0, 5, 5, 7, 8, 8, 8, 8, 7, 6, 6, 5, 8, 4, 0, 3, 4, 6, 3, 2, 8, 1, 2, 4, 9, 7, 5, 2, 7, 6, 4, 5, 2, 8, 7, 6, 0, 7, 3, 3, 7, 7, 8, 1, 8, 7, 6, 8, 2, 8, 2, 6, 8, 3, 4, 5, 5, 9, 8, 5, 9, 6, 9, 7, 6, 9, 4, 9, 9, 0, 5, 1, 5, 1, 6, 5, 1, 4, 5, 9, 9, 0, 9, 3, 2, 8, 4, 3, 2, 4, 0, 6
Offset: 0

Views

Author

Frank M Jackson, Aug 06 2010

Keywords

Comments

This is the first of the three angles (in radians) of a unique triangle that is right angled and where the angles are in a Geometric Progression - pi/(2*phi^2), pi/(2*phi), pi/2. The angles (in degrees) are approx 34.377, 55.623, 90.

Examples

			0.5999908074321633305578888766584034632812497527645287607337781876828268345598596...
		

Programs

  • Mathematica
    RealDigits[N[Pi/(2(GoldenRatio)^2),100]][[1]]
  • PARI
    Pi/4*(3-sqrt(5)) \\ Charles R Greathouse IV, Jul 29 2011

Formula

pi/(2*phi^2) = A019669 / A104457 = (3 - sqrt(5)) * Pi/4.

Extensions

Partially edited by R. J. Mathar, Aug 07 2010
Mathematica program edited by Harvey P. Dale, Jul 10 2012

A183137 a(n) = [1/s] + [2/s] + ... + [n/s], where s = (golden ratio)^2 = (3+sqrt(5))/2 and [] = floor.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 7, 10, 13, 16, 20, 24, 28, 33, 38, 44, 50, 56, 63, 70, 78, 86, 94, 103, 112, 121, 131, 141, 152, 163, 174, 186, 198, 210, 223, 236, 250, 264, 278, 293, 308, 324, 340, 356, 373, 390, 407, 425, 443, 462, 481, 500, 520, 540, 561, 582, 603, 625
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2010

Keywords

Comments

A183136(n) + a(n) = A000217(n+1) (the triangular numbers).

Examples

			a(7) = 7 = 0+0+1+1+1+2+2.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[With[{c=GoldenRatio^2},Floor[Range[60]/c]]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

a(n+1) = a(n) + n - A005206(n). - John Furey, Jun 03 2015

A341906 Decimal expansion of the moment of inertia of a solid regular dodecahedron with a unit mass and a unit edge length.

Original entry on oeis.org

6, 0, 7, 3, 5, 5, 5, 0, 3, 7, 4, 1, 6, 3, 9, 3, 2, 7, 1, 9, 9, 8, 5, 9, 2, 4, 3, 6, 0, 1, 7, 3, 2, 5, 7, 7, 2, 7, 3, 9, 4, 7, 0, 5, 3, 4, 1, 6, 1, 6, 5, 0, 1, 0, 8, 2, 1, 8, 8, 3, 3, 0, 8, 5, 7, 0, 0, 3, 4, 3, 8, 6, 9, 9, 9, 5, 8, 1, 3, 0, 3, 5, 9, 0, 5, 4, 0
Offset: 0

Views

Author

Amiram Eldar, Jun 04 2021

Keywords

Comments

The moments of inertia of the five Platonic solids were apparently first calculated by the Canadian physicist John Satterly (1879-1963) in 1957.
The moment of inertia of a solid regular dodecahedron with a uniform mass density distribution, mass M, and edge length L is I = c*M*L^2, where c is this constant.
The corresponding values of c for the other Platonic solids are:
Tetrahedron: 1/20 (= A020761/10).
Octahedron: 1/10 (= A000007).
Cube: 1/6 (= A020793).
Icosahedron: (3 + sqrt(5))/20 (= A104457/10).

Examples

			0.60735550374163932719985924360173257727394705341616...
		

Crossrefs

Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798.

Programs

  • Mathematica
    RealDigits[(95 + 39*Sqrt[5])/300, 10, 100][[1]]

Formula

Equals (95 + 39*sqrt(5))/300.
Equals (28 + 39*phi)/150, where phi is the golden ratio (A001622).

A385446 Decimal expansion of -7 + 10*phi, with the golden section phi = A001622.

Original entry on oeis.org

9, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7
Offset: 1

Views

Author

Wolfdieter Lang, Jul 01 2025

Keywords

Comments

This constant d gives the imaginary part of -2*11*Z = c + d*i, where Z is the fixed point of a complex function w (of the loxodromic type) mapping vertices of golden triangles, starting with vertices (D_1, D_2, D_3), circumcribed by the unit circle with center at the origin, and D_1 = i (the complex unit), D_2 = (s - phi*i)/2 and D_3 = (-s - phi*i)/2. This function is w(z) = a*z + b, with a = (-1 + phi) * exp(-3*Pi*i/5) = -((2 - phi) + s*i)/2 and b = (1 - phi)*i, where s = sqrt(3 - phi) = A182007 (the length of the base (D2, D3) of the first triangle).
The real part c = (-1 + 3*phi)*s is given in A385445.
For details see A385445, and eqs.(5a,b) of the linked paper there.

Examples

			9.18033988749894848204586834365638117720309179805762862...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[10*GoldenRatio - 7, 10, 120][[1]] (* Amiram Eldar, Jul 02 2025 *)

Formula

Equals -7 + 10*phi, an integer in the quadratic number field Q(sqrt(5)).
Equals 10*A176055-12 = 10*A104457-17 = 10*A001622-7 . - R. J. Mathar, Jul 06 2025

A171969 Smallest prime greater than phi^n.

Original entry on oeis.org

2, 3, 5, 7, 13, 19, 31, 47, 79, 127, 211, 331, 523, 853, 1367, 2207, 3581, 5779, 9371, 15131, 24481, 39607, 64081, 103687, 167771, 271451, 439217, 710663, 1149857, 1860503, 3010363, 4870861, 7881221, 12752053, 20633279
Offset: 1

Views

Author

Michel Lagneau, Nov 19 2010

Keywords

Examples

			The first prime > phi^6 = 17.94427... is 19, so a(6) = 19.
		

Crossrefs

Programs

  • Mathematica
    p[n_] := Module[{r, i}, r = 2; i = 1; While[r <= n, i = i + 1; r = Prime[i]];  r]; Table[p[GoldenRatio^n], {n, 1, 35}]
    NextPrime[GoldenRatio^Range[40]] (* Harvey P. Dale, Dec 06 2013 *)
  • PARI
    a(n)=nextprime(((1+sqrt(5))/2)^n) \\ Charles R Greathouse IV, Jul 29 2011

A192044 Decimal approximation of x such that f(x)=r+1, where f is the Fibonacci function described in Comments and r=(golden ratio).

Original entry on oeis.org

3, 7, 0, 8, 2, 2, 8, 3, 1, 9, 6, 1, 1, 8, 1, 5, 4, 4, 6, 2, 2, 7, 9, 5, 6, 9, 7, 6, 0, 4, 7, 6, 2, 9, 0, 3, 1, 4, 1, 4, 4, 4, 7, 8, 0, 1, 5, 1, 4, 7, 0, 4, 6, 7, 1, 2, 4, 7, 2, 4, 0, 2, 3, 9, 9, 5, 4, 0, 8, 0, 1, 9, 6, 5, 8, 7, 3, 7, 9, 3, 6, 4, 3, 9, 8, 5, 9, 4, 2, 2, 6, 1, 1, 6, 1, 6, 0, 6, 3, 3
Offset: 1

Views

Author

Clark Kimberling, Jun 21 2011

Keywords

Comments

f(x)=(r^x-r^(-x*cos[pi*x]))/sqrt(5), where r=(golden ratio)=(1+sqrt(5))/2. This function, a variant of the Binet formula, gives Fibonacci numbers for integer values of x; e.g., f(3)=2, f(4)=3, f(5)=5.

Examples

			3.70822831961181544622795697604762903141444780151470467124724
		

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; s = 1/Sqrt[5];
    f[x_] := s (r^x - r^-x Cos[Pi x]);
    x /. FindRoot[Fibonacci[x] == r+1, {x, 5}, WorkingPrecision -> 100]
    RealDigits[%, 10]
    (Show[Plot[#1, #2], ListPlot[Table[{x, #1}, #2]]] &)[
    Fibonacci[x], {x, -7, 7}]
    (* Peter J. C. Moses, Jun 21 2011 *)

A257671 Numbers of the form floor(r^i + s^j), where r = (1 + sqrt(5))/2, s = r^2, i >= 0, j >= 0.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 20, 22, 24, 29, 30, 31, 35, 46, 47, 48, 49, 51, 53, 58, 64, 76, 77, 78, 82, 93, 122, 123, 124, 125, 127, 129, 134, 140, 152, 169, 199, 200, 201, 205, 216, 245, 321, 322, 323, 324, 326, 328, 333, 339, 351, 368
Offset: 1

Views

Author

Clark Kimberling, May 03 2015

Keywords

Crossrefs

Programs

  • Mathematica
    mx = 400; r = GoldenRatio; s = r/(r - 1); Union@ Flatten@ Table[ Floor[r^i + s^j], {i, Log[r, mx]}, {j, 0, Log[s, mx - r^i]}] (* iterators modified by Robert G. Wilson v, May 07 2015 *)
Previous Showing 41-50 of 61 results. Next