cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A385578 Decimal expansion of the volume of a parabiaugmented hexagonal prism with unit edge.

Original entry on oeis.org

3, 0, 6, 9, 4, 8, 0, 7, 3, 2, 1, 4, 4, 3, 4, 7, 6, 2, 3, 2, 2, 5, 0, 6, 5, 7, 5, 3, 6, 6, 2, 0, 4, 1, 2, 4, 3, 2, 7, 0, 7, 6, 5, 1, 7, 2, 5, 0, 7, 8, 8, 6, 9, 6, 6, 4, 7, 5, 9, 3, 7, 0, 4, 8, 5, 0, 8, 1, 4, 3, 6, 8, 4, 8, 5, 0, 5, 6, 9, 0, 6, 8, 5, 7, 1, 8, 4, 8, 4, 5
Offset: 1

Views

Author

Paolo Xausa, Jul 04 2025

Keywords

Comments

The parabiaugmented hexagonal prism is Johnson solid J_55.
Also the volume of a metabiaugmented hexagonal prism (Johnson solid J_56) with unit edge.

Examples

			3.0694807321443476232250657536620412432707651725...
		

Crossrefs

Cf. A385257 (surface area + 2).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[8] + 9*Sqrt[3])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J55", "Volume"], 10, 100]]

Formula

Equals (2*sqrt(2) + 9*sqrt(3))/6 = (A010466 + 9*A002194)/6 = A131594 + A104956.
Equals the largest root of 1296*x^4 - 18072*x^2 + 55225.

A179050 Decimal expansion of 5/(2*sqrt(5+2*sqrt(5))), area of regular pentagram with base edge length 1.

Original entry on oeis.org

8, 1, 2, 2, 9, 9, 2, 4, 0, 5, 8, 2, 2, 6, 5, 8, 1, 5, 3, 8, 9, 6, 7, 8, 5, 3, 0, 5, 3, 7, 8, 3, 6, 1, 6, 2, 3, 8, 7, 2, 5, 8, 6, 7, 8, 8, 0, 3, 6, 8, 7, 7, 5, 0, 7, 6, 9, 5, 1, 1, 7, 9, 7, 8, 4, 1, 6, 8, 2, 2, 5, 2, 4, 0, 1, 8, 6, 2, 3, 7, 0, 8, 0, 6, 7, 1, 9, 3, 3, 8, 6, 1, 7, 4, 1, 2, 6, 2, 6, 2, 0, 4, 2, 5, 9
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 4: the smaller positive root of 16x^4 - 200x^2 + 125. - Charles R Greathouse IV, Dec 03 2012

Examples

			0.81229924058226581538967853053783616238725867880368775076951179784168...
		

Crossrefs

Programs

  • Mathematica
    a=1;area=5/(2*Sqrt[5+2*Sqrt[5]]);RealDigits[N[area,20]]
  • PARI
    5/sqrt(20+8*sqrt(5)) \\ Charles R Greathouse IV, Dec 03 2012

Extensions

Offset corrected, keyword:cons inserted by R. J. Mathar, Jun 28 2010
Name corrected by Charles R Greathouse IV, Dec 03 2012

A212886 Decimal expansion of 2/(3*sqrt(3)) = 2*sqrt(3)/9.

Original entry on oeis.org

3, 8, 4, 9, 0, 0, 1, 7, 9, 4, 5, 9, 7, 5, 0, 5, 0, 9, 6, 7, 2, 7, 6, 5, 8, 5, 3, 6, 6, 7, 9, 7, 1, 6, 3, 7, 0, 9, 8, 4, 0, 1, 1, 6, 7, 5, 1, 3, 4, 1, 7, 9, 1, 7, 3, 4, 5, 7, 3, 4, 8, 8, 4, 3, 2, 2, 6, 5, 1, 7, 8, 1, 5, 3, 5, 2, 8, 8, 8, 9, 7, 1, 2, 9, 1, 4, 3, 5, 9, 7, 0, 5, 7, 1, 6, 6, 3, 5, 0, 1, 5, 0, 1, 3, 9
Offset: 0

Views

Author

Rick L. Shepherd, May 29 2012

Keywords

Comments

Consider any cubic polynomial f(x) = a(x - r)(x - (r + s))(x -(r + 2s)), where a, r, and s are real numbers with s > 0 and nonzero a; i.e., any cubic polynomial with three distinct real roots, of which the middle root, r + s, is equidistant (with distance s) from the other two. Then the absolute value of f's local extrema is |a|*s^3*(2*sqrt(3)/9). They occur at x = r + s +- s*(sqrt(3)/3), with the local maximum, M, at r + s - s*sqrt(3)/3 when a is positive and at r + s + s*sqrt(3)/3 when a is negative (and the local minimum, m, vice versa). Of course m = -M < 0.
A quadratic number with denominator 9 and minimal polynomial 27x^2 - 4. - Charles R Greathouse IV, Apr 21 2016
This constant is also the maximum curvature of the exponential curve, occurring at the point M of coordinates [x_M = -log(2)/2 = (-1/10)*A016655; y_M = sqrt(2)/2 = A010503]. The corresponding minimum radius of curvature is (3*sqrt(3))/2 = A104956 (see the reference Eric Billault and the link MathStackExchange). - Bernard Schott, Feb 02 2020

Examples

			0.384900179459750509672765853667971637098401167513417917345734...
		

References

  • Eric Billault, Walter Damin, Robert Ferréol et al., MPSI - Classes Prépas, Khôlles de Maths, Ellipses, 2012, exercice 17.07 pages 386, 389-390.

Crossrefs

Programs

  • Mathematica
    RealDigits[2/(3*Sqrt[3]), 10, 105] (* T. D. Noe, May 31 2012 *)
  • PARI
    default(realprecision, 1000); 2*sqrt(3)/9

Formula

(2/9)*sqrt(3) = (2/9)*A002194.

A258403 Decimal expansion of the area of the regular 10-gon (decagon) of circumradius = 1.

Original entry on oeis.org

2, 9, 3, 8, 9, 2, 6, 2, 6, 1, 4, 6, 2, 3, 6, 5, 6, 4, 5, 8, 4, 3, 5, 2, 9, 7, 7, 3, 1, 9, 5, 3, 6, 3, 8, 4, 2, 9, 8, 8, 2, 6, 2, 1, 8, 8, 2, 1, 5, 7, 2, 9, 9, 5, 5, 3, 6, 1, 3, 6, 2, 4, 0, 3, 7, 8, 6, 3, 9, 2, 3, 7, 0, 8, 1, 1, 7, 5, 9, 7, 8, 7, 5, 4, 2, 5, 2, 0, 2, 4, 9, 3, 1, 3, 7, 0, 6, 6, 7, 9, 8
Offset: 1

Views

Author

Jean-François Alcover, May 29 2015

Keywords

Comments

Quartic number of degree 4 and denominator 2; minimal polynomial 16x^4 - 500x^2 + 3125. - Charles R Greathouse IV, Apr 20 2016

Examples

			2.9389262614623656458435297731953638429882621882157299553613624...
		

Crossrefs

Cf. A104954 (triangle), A104955 (pentagon), A104956 (hexagon), A104957 (heptagon).
Cf. A178816 (area of decagon with edge length 1). A182007.

Programs

  • Mathematica
    RealDigits[(5/2)*Sqrt[(5 - Sqrt[5])/2], 10, 101] // First
  • PARI
    (5/2)*sqrt((5 - sqrt(5))/2) \\ Michel Marcus, May 29 2015

Formula

Equals (5/2)*sqrt((5-sqrt(5))/2).
Area formulas from triangle to dodecagon, with circumradius 1:
n-gon area(n) = (1/2)*n*sin(2*Pi/n)
3-gon (3*sqrt(3))/4
4-gon 2
5-gon (5/4)*sqrt((5+sqrt(5))/2)
6-gon (3*sqrt(3))/2
7-gon (7/2)*cos((3*Pi)/14)
8-gon 2*sqrt(2)
9-gon (9/2)*sin((2*Pi)/9)
10-gon (5/2)*sqrt((5-sqrt(5))/2)
11-gon (11/2)*sin((2*Pi)/11)
12-gon 3
This constant is (5/2)*A182007. - Wolfdieter Lang, May 08 2018

A352672 Decimal expansion of r = (3/2)*(1+sqrt(3)).

Original entry on oeis.org

4, 0, 9, 8, 0, 7, 6, 2, 1, 1, 3, 5, 3, 3, 1, 5, 9, 4, 0, 2, 9, 1, 1, 6, 9, 5, 1, 2, 2, 5, 8, 8, 0, 8, 5, 5, 0, 4, 1, 4, 2, 0, 7, 8, 8, 0, 7, 1, 5, 5, 7, 0, 9, 4, 2, 0, 8, 3, 7, 1, 0, 4, 6, 9, 1, 7, 7, 8, 9, 9, 5, 2, 5, 3, 6, 3, 2, 0, 0, 0, 5, 5, 6, 2, 1, 7
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2022

Keywords

Examples

			4.098076211353315940291169512258808550414...
		

Crossrefs

Apart from leading digits the same as A176325 and A104956.

Programs

  • Mathematica
    r = N[(3/2) (1 + Sqrt[3]), 200]
    RealDigits[r][[1]]

Formula

Equals A104956 + 3/2. - Michel Marcus, Mar 28 2022
Equals (3/2) * A090388. - Bernard Schott, Mar 28 2022

A208745 Decimal expansion of the gravitoid constant.

Original entry on oeis.org

1, 2, 4, 0, 8, 0, 6, 4, 7, 8, 8, 0, 2, 7, 9, 9, 4, 6, 5, 2, 5, 4, 9, 5, 8, 3, 2, 9, 3, 1, 0, 9, 7, 8, 7, 8, 3, 6, 6, 8, 2, 7, 2, 3, 0, 0, 9, 0, 3, 5, 3, 6, 5, 0, 0, 1, 2, 5, 3, 0, 2, 0, 1, 4, 7, 7, 1, 9, 5, 1, 2, 1, 8, 6, 6, 1, 2, 6, 5, 2, 8, 3, 4, 0, 2, 1, 0, 3, 7, 6, 1, 4, 6, 5, 4, 9, 7, 6, 2, 4, 0, 2, 9, 2, 5
Offset: 1

Views

Author

Stanislav Sykora, Mar 01 2012

Keywords

Comments

Ratio between the width and the depth of the gravitoid curve delimiting any axial section of a gravidome. A gravidome is an axially symmetric homogeneous body shaped in a way to produce, given a constant mass, the maximum possible gravitation field at a point (the barypole) on its surface. It is shaped like a tomato; with respect to a sphere it is somewhat flattened and the gravitoid constant describes the amount of the flattening. The terms "gravidome" for the body and "gravitoid" for its axial perimeter curve were coined in 2006 by S. Sykora.
A quartic number of denominator 3 with minimal polynomial 27x^4 - 64. - Charles R Greathouse IV, Apr 21 2016
Also the diameter from vertex to opposite vertex of the regular hexagon of unit area. The regular hexagon of unit side has diameter 2 and area (3/2)*sqrt(3) (A104956); scaling that down to unit area yields diameter 2 / sqrt((3/2)*sqrt(3)). - Kevin Ryde, Mar 07 2020

Examples

			1.2408064788027994652549583293109787836682723009035365001...
		

Programs

Formula

2*sqrt(2/(3*sqrt(3))).
(4/3)^(3/4). - Jon E. Schoenfield, Mar 07 2020
Equals 2F1(1/4,1/2;3/4;3/4) [Zucker] - R. J. Mathar, Jun 24 2024

A333322 Decimal expansion of (3/8) * sqrt(3).

Original entry on oeis.org

6, 4, 9, 5, 1, 9, 0, 5, 2, 8, 3, 8, 3, 2, 8, 9, 8, 5, 0, 7, 2, 7, 9, 2, 3, 7, 8, 0, 6, 4, 7, 0, 2, 1, 3, 7, 6, 0, 3, 5, 5, 1, 9, 7, 0, 1, 7, 8, 8, 9, 2, 7, 3, 5, 5, 2, 0, 9, 2, 7, 6, 1, 7, 2, 9, 4, 4, 7, 4, 8, 8, 1, 3, 4, 0, 8, 0, 0, 0, 1, 3, 9, 0, 5, 4, 2, 9, 8, 2, 0, 0, 3, 3, 9, 6, 8, 2, 1, 5, 8, 7, 8, 3, 5, 9, 8, 0, 3, 0, 3, 0, 7, 7, 7, 5, 1, 3, 6, 3, 6
Offset: 0

Views

Author

Kritsada Moomuang, Mar 15 2020

Keywords

Comments

This is the area of the regular hexagon of diameter 1.
From Bernard Schott, Apr 09 2022 and Oct 01 2022: (Start)
For any triangle ABC, where (A,B,C) are the angles:
sin(A) * sin(B) * sin(C) <= (3/8) * sqrt(3) [Bottema reference],
cos(A/2) * cos(B/2) * cos(C/2) <= (3/8) * sqrt(3) [Mitrinovic reference],
and if (ha,hb,hc) are the altitude lengths and (a,b,c) the side lengths of this triangle [Scott Brown link]:
(ha+hb) * (hb+hc) * (hc+ha) / (a+b) * (b+c) * (c+a) <= (3/8) * sqrt(3).
The equalities are obtained only when triangle ABC is equilateral. (End)

Examples

			0.649519052838328985...
		

References

  • O. Bottema et al., Geometric Inequalities, Groningen, 1969, item 2.7, page 19.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.15, p. 526.
  • D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.2.2, page 111.

Crossrefs

Cf. A002194 (sqrt(3)), A104954.
Cf. A010527, A020821, A104956, A152623 (other geometric inequalities).

Programs

Formula

Equals A104954/2 or A104956/4.

A385694 Decimal expansion of the volume of a triaugmented hexagonal prism with unit edge.

Original entry on oeis.org

3, 3, 0, 5, 1, 8, 2, 9, 9, 2, 5, 3, 9, 8, 6, 3, 4, 6, 4, 6, 9, 2, 0, 1, 3, 8, 7, 4, 3, 6, 3, 6, 5, 7, 5, 8, 9, 6, 9, 9, 0, 4, 3, 8, 1, 8, 4, 0, 4, 0, 4, 4, 9, 7, 8, 6, 7, 2, 0, 5, 0, 3, 3, 8, 1, 7, 3, 2, 6, 5, 7, 6, 4, 5, 9, 4, 2, 5, 3, 5, 7, 5, 0, 4, 6, 9, 1, 3, 0, 4
Offset: 1

Views

Author

Paolo Xausa, Jul 07 2025

Keywords

Comments

The triaugmented hexagonal prism is Johnson solid J_57.

Examples

			3.3051829925398634646920138743636575896990438184040...
		

Crossrefs

Cf. A385259 (surface area + 7).

Programs

  • Mathematica
    First[RealDigits[1/Sqrt[2] + 3*Sqrt[3]/2, 10, 100]]
    First[RealDigits[PolyhedronData["J57", "Volume"], 10, 100]]

Formula

Equals 1/sqrt(2) + 3*sqrt(3)/2 = A010503 + A104956.
Equals the largest root of 16*x^4 - 232*x^2 + 625.

A386435 Decimal expansion of the largest dihedral angle, in radians, in a triangular bipyramid (Johnson solid J_12).

Original entry on oeis.org

2, 4, 6, 1, 9, 1, 8, 8, 3, 4, 6, 8, 1, 5, 4, 9, 3, 6, 4, 2, 6, 9, 8, 5, 8, 3, 5, 6, 4, 9, 5, 9, 7, 4, 7, 5, 1, 4, 2, 0, 6, 8, 0, 0, 1, 8, 7, 1, 0, 1, 8, 9, 6, 7, 8, 1, 1, 1, 0, 9, 6, 6, 6, 7, 3, 2, 7, 9, 8, 4, 6, 2, 8, 9, 5, 6, 5, 1, 2, 1, 7, 5, 7, 0, 6, 5, 0, 3, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 20 2025

Keywords

Comments

Also the largest dihedral angle in a triangular orthobicupola (Johnson solid J_27) and the second largest dihedral angle in an augmented truncated tetrahedron (Johnson solid J_65).

Examples

			2.461918834681549364269858356495974751420680018710...
		

Crossrefs

Cf. A137914 (J_12 smallest dihedral angle).
Cf. A020775 (J_12 volume), A104956 (J_12 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-7/9], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J12", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-7/9).

A370562 Decimal expansion of (2*Pi - 3*sqrt(3))/2.

Original entry on oeis.org

5, 4, 3, 5, 1, 6, 4, 4, 2, 2, 3, 6, 4, 7, 7, 2, 9, 8, 1, 7, 1, 4, 7, 3, 8, 7, 1, 0, 2, 0, 6, 9, 4, 3, 3, 3, 7, 8, 2, 9, 6, 1, 5, 1, 8, 6, 5, 9, 5, 3, 4, 8, 7, 8, 8, 9, 1, 2, 3, 4, 1, 2, 3, 1, 2, 9, 9, 1, 6, 8, 8, 0, 9, 2, 3, 0, 0, 8, 9, 4, 3, 0
Offset: 0

Views

Author

Wolfdieter Lang, Mar 15 2024

Keywords

Comments

This constant is the difference of the area of a disk with radius 1 (length unit) and the inscribed regular hexagon.

Examples

			0.5435164422364772981714738710206943337829615186595348788912...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi - 3*Sqrt[3]/2, 10, 120][[1]] (* Amiram Eldar, Mar 15 2024 *)

Formula

Equals (A019692 - A010482)/2.
Equals Pi - 3*sqrt(3)/2 = A000796 - A104956.
Previous Showing 21-30 of 30 results.