cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A195710 Decimal expansion of arccos(-sqrt(2/5)).

Original entry on oeis.org

2, 2, 5, 5, 5, 1, 5, 5, 2, 9, 7, 9, 7, 1, 7, 9, 5, 3, 3, 1, 1, 9, 4, 1, 9, 7, 6, 1, 3, 5, 0, 8, 1, 5, 4, 5, 8, 0, 2, 7, 8, 5, 8, 0, 0, 8, 8, 3, 0, 2, 1, 5, 1, 7, 2, 6, 0, 2, 5, 8, 2, 8, 2, 2, 5, 0, 3, 0, 5, 7, 6, 1, 7, 4, 0, 0, 2, 3, 0, 8, 2, 3, 7, 8, 3, 1, 0, 3, 6, 5, 3, 9, 6, 1, 3, 8, 7, 8, 3, 2
Offset: 1

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arccos(-sqrt(2/5)) = 2.25551552979717...
		

Crossrefs

Programs

  • Magma
    [Arccos(-Sqrt(2/5))]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    r = Sqrt[1/5]; s = Sqrt[2/5];
    N[ArcSin[r], 100]
    RealDigits[%]  (* A073000 *)
    N[ArcCos[r], 100]
    RealDigits[%]  (* A105199 *)
    N[ArcTan[r], 100]
    RealDigits[%]  (* A188595 *)
    N[ArcCos[-r], 100]
    RealDigits[%]  (* A137218 *)
    N[ArcSin[s], 100]
    RealDigits[%]  (* A195701 *)
    N[ArcCos[s], 100]
    RealDigits[%]  (* A195708 *)
    N[ArcTan[s], 100]
    RealDigits[%]  (* A195709 *)
    N[ArcCos[-s], 100]
    RealDigits[%]  (* A195710 *)
    RealDigits[ArcCos[-Sqrt[(2/5)]],10,120][[1]] (* Harvey P. Dale, Apr 06 2023 *)
  • PARI
    acos(-sqrt(2/5)) \\ G. C. Greubel, Nov 18 2017
    

Formula

Equals Pi - arcsin(sqrt(3/5)) = Pi - arctan(sqrt(3/2)). - Amiram Eldar, Jul 08 2023

A197376 Decimal expansion of least x>0 having sin(x)=(sin (x/2))^2.

Original entry on oeis.org

2, 2, 1, 4, 2, 9, 7, 4, 3, 5, 5, 8, 8, 1, 8, 1, 0, 0, 6, 0, 3, 4, 1, 3, 0, 9, 2, 0, 3, 5, 7, 0, 7, 4, 0, 8, 0, 1, 4, 0, 0, 9, 5, 2, 9, 0, 8, 0, 2, 8, 6, 5, 2, 9, 3, 3, 5, 3, 0, 7, 8, 4, 1, 4, 8, 6, 7, 4, 2, 0, 6, 7, 7, 9, 5, 4, 7, 2, 5, 5, 8, 8, 0, 2, 6, 8, 3, 4, 2, 5, 7, 3, 7, 2, 3, 4, 1, 2, 8
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2011

Keywords

Comments

The Mathematica program includes a graph. See A197133 for a guide to least x>0 satisfying sin(b*x)=(sin(c*x))^2 for selected b and c.

Examples

			2.2142974355881810060341309203570740...
		

Crossrefs

Cf. A197133.

Programs

  • Mathematica
    b = 1; c = 1/2; f[x_] := Sin[x]
    t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 2, 2.5}, WorkingPrecision -> 200]
    RealDigits[t] (*  *)
    Plot[{f[b*x], f[c*x]^2}, {x, 0, 2.5}]
    RealDigits[ 2*ArcCos[ 1/Sqrt[5] ], 10, 99] // First (* Jean-François Alcover, Feb 19 2013 *)

Formula

Equals 2*A105199. - R. J. Mathar, Aug 27 2024

A383859 Central angle of the solution of the Tammes problem for 7 points on the sphere (in radians).

Original entry on oeis.org

1, 3, 5, 9, 0, 7, 9, 8, 9, 7, 6, 3, 2, 6, 6, 0, 1, 4, 1, 8, 8, 5, 0, 0, 2, 8, 8, 1, 6, 4, 7, 3, 3, 2, 7, 5, 3, 7, 8, 3, 0, 2, 1, 4, 5, 9, 8, 6, 1, 2, 8, 2, 4, 9, 1, 3, 2, 6, 2, 8, 0, 7, 8, 3, 7, 1, 5, 9, 7, 3, 9, 8, 1, 6, 5, 8, 7, 6, 9, 7, 2, 4, 2, 6
Offset: 1

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			1.3590798976326601418850028816473327537..
		

Crossrefs

Cf. A019819, A019669 (N=6), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383860 (N=14), A383861 (N=24).

Programs

  • Maple
    cos(4*Pi/9) ; %/(1-%) ; arccos(%) ; evalf(%,120) ;

Formula

cos( this ) = cos phi/(1- cos phi) where cos(phi)=A019819.

A383860 Central angle of the solution of the Tammes problem for 14 points on the sphere (in radians).

Original entry on oeis.org

9, 7, 1, 6, 3, 4, 7, 4, 2, 8, 8, 6, 2, 2, 4, 0, 7, 5, 9, 4, 1, 6, 9, 4, 9, 4, 7, 6, 2, 8, 5, 4, 1, 1, 3, 8, 1, 7, 9, 0, 1, 0, 6, 8, 2, 7, 6, 8, 4, 7, 8, 2, 0, 7, 0, 2, 6, 8, 0, 3, 3, 4, 8, 1, 3, 5, 4, 5, 5, 6, 5, 0, 7, 3, 5, 4, 4, 0, 3, 2, 9, 4, 6, 3, 9, 9, 5, 3, 9, 9, 4
Offset: 0

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			0.971634742886224075941694947628...
		

Crossrefs

Cf. A019669 (N=6), A383859 (N=7), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383861 (N=24).

Programs

  • Maple
    Digits := 120 ;
    g := proc(c,x)
        2*arccot(c*tan(x/2)) ;
    end proc:
    f := proc(x)
        local c,x1,x2,x3,x4,x5 ;
        c := cos(x)/(1-cos(x)) ;
        x1 := Pi-x ;
        x2 := g(c,x1) ;
        x3 := 2*Pi-2*x-x2 ;
        x4 := g(c,x3) ;
        x5 := 2*Pi-x-2*x4 ;
        2*Pi-2*x-x3-g(c,x5) ;
    end proc:
    x := 1.2 ; y := 1.21 ;
    for i from 1 to 500 do
        z := (x+y)/2 ;
        if f(z) > 0. then
            x := z ;
        else
            y := z ;
        end if;
        cos(z)/(1-cos(z)) ;
        if modp(i,20) =0 then
            arccos(%) ; evalf(%,120) ; print(%) ;
        end if;
        if x > y then
            break ;
        end if;
    end do:

A383861 Central angle of the solution of the Tammes problem for 24 points on the sphere (in radians).

Original entry on oeis.org

7, 6, 2, 5, 4, 7, 7, 3, 8, 7, 5, 0, 9, 8, 2, 5, 5, 6, 7, 4, 3, 1, 0, 6, 0, 9, 2, 1, 1, 4, 8, 8, 2, 8, 1, 8, 0, 6, 9, 1, 3, 9, 1, 6, 3, 6, 8, 6, 5, 5, 2, 2, 9, 4, 0, 5, 6, 6, 1, 4, 0, 6, 6, 5, 5, 5, 8, 6, 3, 8, 1, 8, 5, 9, 4, 2, 4, 3, 1, 2, 9, 4, 1, 8, 0, 2, 4, 4, 8, 6, 0, 4, 5, 9, 2, 2, 9, 6, 4, 9, 5, 7, 7, 9, 3, 5, 8, 9, 9, 8, 0, 6, 4, 2
Offset: 0

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			0.762547738750982556743106092114...
		

Crossrefs

Cf. A058265, A019669 (N=6), A383859 (N=7), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383860 (N=14).

Programs

  • Maple
    t := (1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3 ; arccos((t-1)/(3-t)) ; evalf(%,120);

Formula

cos( this ) = (t-1)/(3-t) where t=A058265.

A387191 Decimal expansion of the second largest dihedral angle, in radians, in an elongated pentagonal rotunda (Johnson solid J_21).

Original entry on oeis.org

2, 6, 7, 7, 9, 4, 5, 0, 4, 4, 5, 8, 8, 9, 8, 7, 1, 2, 2, 2, 4, 8, 3, 8, 7, 1, 5, 1, 8, 1, 8, 2, 8, 8, 4, 8, 2, 1, 6, 8, 6, 3, 2, 3, 4, 5, 0, 8, 8, 9, 8, 5, 5, 5, 7, 1, 6, 4, 0, 1, 1, 5, 0, 3, 5, 8, 7, 6, 1, 8, 5, 4, 2, 1, 2, 0, 4, 6, 7, 2, 9, 3, 3, 2, 7, 4, 3, 4, 5, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 22 2025

Keywords

Comments

This is the dihedral angle between a square face and a pentagonal face.
Also one of the dihedral angles in Johnson solids J_40-J_43, J_72-J_75, J_77-J_79 and J_82.

Examples

			2.677945044588987122248387151818288482168632345...
		

Crossrefs

Cf. other J_21 dihedral angles: A019669, A228824, A344075, A386530.
Cf. A384213 (J_21 volume), A179637 (J_21 surface area - 10).

Programs

  • Mathematica
    First[RealDigits[Pi/2 + ArcTan[2], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J21", "DihedralAngles"]], 2], 10, 100]]

Formula

Equals Pi/2 + arctan(2) = A019669 + A105199.
Equals arccos(-2*sqrt(5)/5) = arccos(-A010476/5).

A386732 Decimal expansion of Integral_{x>=2} 1/(x^12-1) dx.

Original entry on oeis.org

0, 0, 0, 0, 4, 4, 3, 9, 4, 3, 8, 8, 3, 8, 9, 7, 3, 2, 9, 3, 1, 6, 1, 9, 7, 9, 3, 7, 0, 8, 8, 6, 1, 0, 4, 5, 9, 0, 2, 9, 4, 1, 1, 8, 5, 0, 4, 7, 6, 8, 8, 5, 1, 8, 1, 8, 5, 7, 0, 2, 5, 0, 0, 7, 5, 2, 9, 5, 8, 9, 0, 0, 4, 2, 4, 9, 5, 9, 9, 5, 3, 8, 0, 8, 1, 2, 9, 4, 5, 1, 1, 5, 5, 0, 3, 9, 2, 3, 2, 5, 1, 8, 3, 8
Offset: 0

Views

Author

Jason Bard, Jul 31 2025

Keywords

Examples

			0.000044394388389732931619793708861045902941185047688518...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0, 0}, RealDigits[1/72 (-4 (3 + Sqrt[3]) Pi + 3 (4 ArcTan[2] + 2 Sqrt[3] ArcTan[5/Sqrt[3]] + 2 ArcTan[4 - Sqrt[3]] + 2 ArcTan[4 + Sqrt[3]] + Log[21] - Sqrt[3] Log[5 - 2 Sqrt[3]] + Sqrt[3] Log[5 + 2 Sqrt[3]])), 10, 100][[1]]]
    (* or *)
    Join[{0, 0, 0, 0}, RealDigits[Integrate[1/(x^12 - 1), {x, 2, Infinity}], 10, 100][[1]]]
    (* or *)
    Join[{0, 0, 0, 0}, RealDigits[1/22528*Hypergeometric2F1[11/12, 1, 23/12, 1/4096], 10, 100][[1]]]

Formula

Equals (1/22528) * hypergeometric(11/12, 1; 23/12; 1/4096).
Equals (-6*Pi - 4*sqrt(3)*Pi + 12*arctan(2) - 3*arctan(12/5) + 6*sqrt(3) * arctan(5/sqrt(3)) + 6*sqrt(3) * arctanh((2*sqrt(3))/5) + log(9261))/72.

A386853 Decimal expansion of the dihedral angle, in radians, between the 10-gonal face and a triangular face in a pentagonal rotunda (Johnson solid J_6).

Original entry on oeis.org

1, 3, 8, 2, 0, 8, 5, 7, 9, 6, 0, 1, 1, 3, 3, 4, 5, 4, 9, 4, 5, 0, 1, 8, 7, 2, 9, 1, 4, 5, 7, 1, 4, 3, 2, 6, 9, 7, 6, 1, 8, 1, 3, 8, 3, 4, 0, 1, 0, 6, 9, 3, 4, 3, 2, 5, 0, 3, 6, 7, 7, 4, 3, 8, 1, 6, 7, 9, 6, 2, 4, 8, 3, 4, 8, 7, 8, 0, 6, 6, 7, 1, 7, 0, 5, 0, 5, 0, 5, 5
Offset: 1

Views

Author

Paolo Xausa, Aug 06 2025

Keywords

Examples

			1.38208579601133454945018729145714326976181383401...
		

Crossrefs

Cf. A179593 (volume), A179637 (surface area).
Cf. other J_6 dihedral angles: A105199, A344075.

Programs

  • Mathematica
    First[RealDigits[ArcCos[Sqrt[(5 - Sqrt[20])/15]], 10, 100]] (* or *)
    First[RealDigits[RankedMin[Union[PolyhedronData["J6", "DihedralAngles"]], 2], 10, 100]]
  • PARI
    acos(sqrt((5 - 2*sqrt(5))/15)) \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals arccos(sqrt((5 - 2*sqrt(5))/15)) = arccos(sqrt((5 - A010476)/15)).

A387189 Decimal expansion of the smallest dihedral angle, in radians, in a pentagonal bipyramid (Johnson solid J_13).

Original entry on oeis.org

1, 3, 0, 4, 7, 1, 6, 2, 7, 9, 5, 6, 8, 7, 3, 6, 3, 7, 1, 9, 9, 0, 7, 8, 1, 2, 6, 3, 2, 8, 7, 6, 4, 5, 1, 4, 8, 7, 3, 0, 6, 1, 5, 8, 3, 9, 9, 2, 5, 9, 5, 9, 4, 8, 3, 5, 8, 9, 4, 5, 5, 8, 9, 3, 4, 1, 2, 2, 8, 7, 1, 6, 7, 6, 4, 2, 0, 7, 9, 0, 6, 5, 8, 1, 9, 1, 3, 4, 2, 8
Offset: 1

Views

Author

Paolo Xausa, Aug 21 2025

Keywords

Comments

This is the dihedral angle between triangular faces at the edge where the two pyramidal parts of the solid meet.
Also the dihedral angle between triangular faces in a pentagonal orthobicupola (Johnson solid J_30).

Examples

			1.3047162795687363719907812632876451487306158399...
		

Crossrefs

Cf. A236367 (J_13 smallest dihedral angle).
Cf. other J_30 dihedral angles: A105199, A377995, A377996.
Cf. A179641 (J_13 volume), A120011 (J_13 surface area, divided by 10).
Cf. A384624 (J_30 volume), A384625 (J_30 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[(Sqrt[80] - 5)/15], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J13", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((4*sqrt(5) - 5)/15) = arccos((A010532 - 5)/15).
Equals 2*A386852.

A366313 a(n) = Product_{k=0..2*n} (n^2 + k^2).

Original entry on oeis.org

0, 10, 41600, 805545000, 48248012800000, 6993773647152500000, 2092947132921735168000000, 1157435764584534017163490000000, 1090228457517544945858327347200000000, 1643200095810939801357184785754425000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^2 + n^2, {k, 0, 2*n}], {n, 0, 10}]
    Table[n^2*Pochhammer[1 - I*n, 2*n]*Pochhammer[1 + I*n, 2*n], {n, 0, 10}]
  • PARI
    a(n) = prod(k=0, 2*n, n^2 + k^2); \\ Michel Marcus, Oct 06 2023

Formula

a(n) = n * sinh(n*Pi) * Gamma(1 + (2-i)*n) * Gamma(1 + (2+i)*n)/Pi, where i is the imaginary unit.
a(n) ~ 5^(2*n + 1/2) * exp(2*n*(arctan(2) - 2)) * n^(4*n+2).
Previous Showing 11-20 of 20 results.