cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A105522 Inverse of number triangle A105438.

Original entry on oeis.org

1, -2, 1, 1, -2, 1, 2, 0, -2, 1, -2, 4, -1, -2, 1, -4, -1, 6, -2, -2, 1, 5, -10, 1, 8, -3, -2, 1, 10, 4, -18, 4, 10, -4, -2, 1, -14, 28, 0, -28, 8, 12, -5, -2, 1, -28, -14, 56, -8, -40, 13, 14, -6, -2, 1, 42, -84, -6, 96, -21, -54, 19, 16, -7, -2, 1, 84, 48, -180, 15, 150, -40, -70, 26, 18, -8, -2, 1, -132, 264, 33, -330, 55, 220, -66
Offset: 0

Views

Author

Paul Barry, Apr 11 2005

Keywords

Comments

Row sums A105523 have g.f. 1-xc(-x^2) where c(x) is the g.f. of A000108. Diagonal sums are A105524.

Examples

			Rows begin {1}, {-2, 1}, {1, -2, 1}, {2, 0, -2, 1}, {-2, 4, -1, -2, 1}, ...
		

Formula

Riordan array ((1+2x+4x^2-(1+2x)sqrt(1+4x^2))/(2x^2), (sqrt(1+4x^2)-1)/(2x))

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017

A124448 Riordan array (sqrt(1+4x^2)-2x, (1+2x-sqrt(1+4x^2))/2).

Original entry on oeis.org

1, -2, 1, 2, -3, 1, 0, 4, -4, 1, -2, -1, 7, -5, 1, 0, -4, -4, 11, -6, 1, 4, 2, -6, -10, 16, -7, 1, 0, 8, 8, -6, -20, 22, -8, 1, -10, -5, 11, 19, -1, -35, 29, -9, 1, 0, -20, -20, 7, 34, 13, -56, 37, -10, 1, 28, 14, -26, -46, -12, 49, 41, -84
Offset: 0

Views

Author

Paul Barry, Nov 01 2006

Keywords

Comments

Inverse of triangle A106195.
Row sums are A105523 (expansion of 1-xc(-x^2) where c(x) is the g.f. of A000108).
Product of A007318 and A124448 is inverse of A053538.
A124448*A007318 = A106180, as infinite lower triangular matrices. - Philippe Deléham, Oct 16 2007
Triangle T(n,k), read by rows, given by (-2,1,-1,1,-1,1,-1,1,-1,...) DELTA (1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 09 2011

Examples

			Triangle begins
   1;
  -2,   1;
   2,  -3,   1;
   0,   4,  -4,   1;
  -2,  -1,   7,  -5,   1;
   0,  -4,  -4,  11,  -6,   1;
   4,   2,  -6, -10,  16,  -7,   1;
   0,   8,   8,  -6, -20,  22,  -8,   1;
		

Crossrefs

Programs

  • PARI
    N=12;
    T(n, k)=sum(i=0, n-k, binomial(k, i)*binomial(n-k, i)*2^(n-k-i));
    M=matrix(N, N);
    for(n=1, N, for(k=1, n, M[n, k]=T(n-1, k-1))); /* A106195 */
    A=M^-1;  /* A124448 */
    /* for (n=1, N, for(k=1, n, print1(M[n, k], ", "))); */ /* A106195 */
    for (n=1, N, for(k=1, n, print1(A[n, k], ", "))); /* A124448 */
    /* Joerg Arndt, May 14 2011 */

Extensions

Edited by N. J. A. Sloane, Dec 29 2011

A125692 Riordan array (1-x*c(-x^2),x(1-x*c(-x^2))) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 1, 1, -3, 1, 0, 2, 3, -4, 1, -2, -2, 2, 6, -5, 1, 0, -4, -6, 0, 10, -6, 1, 5, 5, -3, -11, -5, 15, -7, 1, 0, 10, 15, 4, -15, -14, 21, -8, 1, -14, -14, 6, 26, 19, -15, -28, 28, -9, 1, 0, -28, -42, -16, 30, 42, -7, -48, 36, -10, 1
Offset: 0

Views

Author

Paul Barry, Nov 30 2006

Keywords

Comments

Row sums are aerated signed Catalan numbers with g.f. c(-x^2). Inverse of A105306. First column is A105523.

Examples

			Triangle begins
1,
-1, 1,
0, -2, 1,
1, 1, -3, 1,
0, 2, 3, -4, 1,
-2, -2, 2, 6, -5, 1,
0, -4, -6, 0, 10, -6, 1
Contribution from _Paul Barry_, Apr 18 2010: (Start)
Production matrix begins
-1, 1,
-1, -1, 1,
-1, -1, -1, 1,
-1, -1, -1, -1, 1,
-1, -1, -1, -1, -1, 1,
-1, -1, -1, -1, -1, -1, 1,
-1, -1, -1, -1, -1, -1, -1, 1,
-1, -1, -1, -1, -1, -1, -1, -1, 1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, 1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1 (End)
		

A376134 a(0) = 1; a(n) = Sum_{k=0..n-1} (-1)^k * (k+1) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, -1, -6, 17, 141, -660, -6688, 43837, 521755, -4412893, -60477282, 628119268, 9772644140, -120524236108, -2103803950976, 30068650440341, 582807287964375, -9477098158324107, -202143447363632090, 3686281848172281145, 85853256990102196221, -1735552985238117874788
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^k (k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 22}]
    nmax = 22; A[] = 0; Do[A[x] = 1/(1 - x A[-x] + x^2 A'[-x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(-x) + x^2 * A'(-x)).

A376135 a(0) = 1; a(n) = Sum_{k=0..n-1} (-1)^k * (2*k+1) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, -2, -15, 86, 1030, -9844, -156219, 2098406, 41282298, -716119260, -16837011158, 358425572604, 9820300812556, -247923816153128, -7765514675946195, 226869417798485382, 8001626352728559218, -265582398152349968716, -10419379442081103988738
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^k (2 k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
    nmax = 19; A[] = 0; Do[A[x] = 1/(1 - x A[-x] + 2 x^2 A'[-x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(-x) + 2 * x^2 * A'(-x)).

A376137 a(0) = 1; a(n) = Sum_{k=0..n-1} (-1)^k * (k+1)^2 * a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, -3, -34, 495, 13631, -467404, -23984426, 1490938299, 123999435015, -12164649041259, -1497474725212924, 212746558833692052, 36393896155519042476, -7062273474686464802160, -1603475573855830444120802, 407344895625777134555939139, 118552169162473363108837155199, -38177398083353809033748641523305
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^k (k + 1)^2 a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; A[] = 0; Do[A[x] = 1/(1 - x A[-x] + 3 x^2 A'[-x] - x^3 A''[-x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(-x) + 3 * x^2 * A'(-x) - x^3 * A''(-x)).

A291207 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 + x/(1 - 2^k*x/(1 + 3^k*x/(1 - 4^k*x/(1 + 5^k*x/(1 - ...)))))).

Original entry on oeis.org

1, 1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -3, 5, 0, 1, -1, -7, 27, 17, -2, 1, -1, -15, 167, 441, -121, 0, 1, -1, -31, 1071, 10673, -11529, -721, 5, 1, -1, -63, 6815, 262305, -1337713, -442827, 6845, 0, 1, -1, -127, 42687, 6525377, -161721441, -297209047, 23444883, 58337, -14
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 21 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 - x + (1 - 2^k)*x^2 + (2^(k + 1) - 4^k + 6^k - 1)*x^3 + ...
Square array begins:
   1,     1,       1,         1,           1,             1,  ...
  -1,    -1,      -1,        -1,          -1,            -1,  ...
   0,    -1,      -3,        -7,         -15,           -31,  ...
   1,     5,      27,       167,        1071,          6815,  ...
   0,    17,     441,     10673,      262305,       6525377,  ...
  -2,  -121,  -11529,  -1337713,  -161721441,  -19802585281,  ...
		

Crossrefs

Columns k=0-2 give A105523, A202038, A193544.
Main diagonal gives A292920.
Cf. A290569.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(-1)^i i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten

Formula

G.f. of column k: 1/(1 + x/(1 - 2^k*x/(1 + 3^k*x/(1 - 4^k*x/(1 + 5^k*x/(1 - ...)))))), a continued fraction.

A123254 Triangle T(n,k), 0<=k<=n, read by rows given by [ -1,1,-1,1,-1,1,-1,1,-1,1,...] DELTA [1,-1,1,-1,1,-1,1,-1,1,-1,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, -1, 1, 0, 0, 0, 1, -3, 3, -1, 0, 0, 0, 0, 0, -2, 10, -20, 20, -10, 2, 0, 0, 0, 0, 0, 0, 0, 5, -35, 105, -175, 175, -105, 35, -5, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 126, -504, 1176, -1764, 1764, -1176, 504, -126, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 08 2006

Keywords

Examples

			Triangle begins:
1;
-1, 1;
0, 0, 0;
1, -3, 3, -1;
0, 0, 0, 0, 0;
-2, 10, -20, 20, -10, 2;
0, 0, 0, 0, 0, 0, 0;
5, -35, 105, -175, 175, -106, 35, -5;
0, 0, 0, 0, 0, 0, 0, 0, 0;
		

Crossrefs

Formula

T(n,k)=(-1)^k*A105523(n)*binomial(n,k) . T(n,n)=A090192(n) . Sum_{k, 0<=k<=n}T(n,k)= 0^n= A000007(n).
Previous Showing 11-19 of 19 results.