A105524
Diagonal sums of number triangle A105522.
Original entry on oeis.org
1, -2, 2, 0, -1, -2, 4, 4, -10, -12, 30, 36, -93, -114, 300, 372, -994, -1244, 3364, 4240, -11578, -14676, 40400, 51448, -142592, -182288, 508166, 651756, -1826037, -2348562, 6608844, 8520564, -24069258, -31097388, 88145436, 114096096, -324391422, -420590652, 1199074584
Offset: 0
-
CoefficientList[Series[((1+2*x)*Sqrt[1+4*x^2]-4*x^2-2*x-1)/(x^2*(Sqrt[1+4*x^2]-3)), {x,0,38}], x] (* Georg Fischer, Apr 09 2020 *)
A105523
Expansion of 1-x*c(-x^2) where c(x) is the g.f. of A000108.
Original entry on oeis.org
1, -1, 0, 1, 0, -2, 0, 5, 0, -14, 0, 42, 0, -132, 0, 429, 0, -1430, 0, 4862, 0, -16796, 0, 58786, 0, -208012, 0, 742900, 0, -2674440, 0, 9694845, 0, -35357670, 0, 129644790, 0, -477638700, 0, 1767263190, 0
Offset: 0
G.f. = 1 - x + x^3 - 2*x^5 + 5*x^7 - 14*x^9 + 42*x^11 - 132*x^13 + 429*x^15 + ...
-
m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 + 2*x - Sqrt(1+4*x^2))/(2*x))); // G. C. Greubel, Sep 16 2018
-
A105523_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w]:=-a[w-1]+(-1)^w*add(a[j]*a[w-j-1],j=1..w-1) od; convert(a,list)end: A105523_list(40); # Peter Luschny, May 19 2011
-
a[n_?EvenQ] := 0; a[n_?OddQ] := 4^n*Gamma[n/2] / (Gamma[-n/2]*(n+1)!); a[0] = 1; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 14 2011, after Vladimir Kruchinin *)
CoefficientList[Series[(1 + 2 x - Sqrt[1 + 4 x^2])/(2 x), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 01 2014 *)
a[ n_] := SeriesCoefficient[ (1 + 2 x - Sqrt[ 1 + 4 x^2]) / (2 x), {x, 0, n}]; (* Michael Somos, Jun 17 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], a[n] = -2 a[n - 1] + Sum[ a[j] a[n - j - 1], {j, 0, n - 1}]]; (* Michael Somos, Jun 17 2015 *)
-
{a(n) = local(A); if( n<0, 0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = -2 * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
-
def A105523(n):
if is_even(n): return 0 if n>0 else 1
return -(sqrt(pi)*2^(n-1))/(gamma(1-n/2)*gamma((n+3)/2))
[A105523(n) for n in (0..29)] # Peter Luschny, Oct 31 2014
A105438
Triangle, row sums = (Fibonacci numbers - 2).
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 6, 5, 2, 1, 6, 9, 8, 6, 2, 1, 7, 12, 14, 10, 7, 2, 1, 8, 16, 20, 20, 12, 8, 2, 1, 9, 20, 30, 30, 27, 14, 9, 2, 1, 10, 25, 40, 50, 42, 35, 16, 10, 2, 1, 11, 30, 55, 70, 77, 56, 44, 18, 11, 2, 1
Offset: 0
Column 2: 1, 2, 5, 8, 14, 20, 30...is generated by using the partial sum operator on 1, 1, 3, 3, 6, 6, 10, 10...
The first few rows of the triangle are:
1;
2, 1;
3, 2, 1;
4, 4, 2, 1;
5, 6, 5, 2, 1;
6, 9, 8, 6, 2, 1;
7, 12, 14, 10, 7, 2, 1;
8, 16, 20, 20, 12, 8, 2, 1;
9, 20, 30, 30, 27, 14, 9, 2, 1;
10, 25, 40, 50, 42, 35, 16, 10, 2, 1;
...
Showing 1-3 of 3 results.
Comments