cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A346077 a(n) = 1 + Sum_{k=1..n-5} a(k) * a(n-k-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 12, 18, 26, 36, 49, 69, 101, 150, 221, 320, 460, 667, 981, 1456, 2161, 3191, 4698, 6932, 10283, 15324, 22870, 34103, 50813, 75770, 113229, 169590, 254340, 381579, 572537, 859511, 1291681, 1943489, 2926980, 4410709, 6649220, 10028570
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 5], {k, 1, n - 5}]; Table[a[n], {n, 0, 47}]
    nmax = 47; A[] = 0; Do[A[x] = 1/(1 - x) + x^5 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • SageMath
    @CachedFunction
    def a(n): # a = A346077
        if (n<6): return 1
        else: return 1 + sum(a(k)*a(n-k-5) for k in range(1,n-4))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 27 2022

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^5 * A(x) * (A(x) - 1).

A377441 Square array T(n, k) read by rising antidiagonals. Row n has the ordinary generating function (-(n*x^3-(n+1)*x^2+x) + sqrt((n*x^3-(n+1)*x^2+x)^2 - 4*(x^3-x^2)*((n+1)*x^2-x)))/(2*(x^3-x^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 6, 14, 1, 1, 2, 7, 21, 42, 1, 1, 2, 8, 30, 78, 132, 1, 1, 2, 9, 41, 136, 299, 429, 1, 1, 2, 10, 54, 222, 630, 1172, 1430, 1, 1, 2, 11, 69, 342, 1221, 2959, 4677, 4862, 1, 1, 2, 12, 86, 502, 2192, 6774, 14058, 18947, 16796, 1, 1, 2, 13, 105, 708, 3687, 14129, 37853, 67472, 77746, 58786, 1, 1, 2, 14, 126, 966, 5874, 27184
Offset: 0

Views

Author

Thomas Scheuerle, Oct 28 2024

Keywords

Comments

The Hankel sequence transform of row n satisfies the Somos-4 recurrence c(k) = (c(k-1) * c(k-3) + n*c(k-2)^2) / c(k-4). All Somos-4 sequences which are beginning with 1, 1, 1, 1, n, ... will be covered, but the Hankel transform will start with the terms 1, n, ... in each case.

Examples

			The array begins:
  [0] 1, 1, 2,  5, 14,  42,  132,   429,   1430, ... = A000108
  [1] 1, 1, 2,  6, 21,  78,  299,  1172,   4677, ... = A254316
  [2] 1, 1, 2,  7, 30, 136,  630,  2959,  14058, ...
  [3] 1, 1, 2,  8, 41, 222, 1221,  6774,  37853, ...
  [4] 1, 1, 2,  9, 54, 342, 2192, 14129,  91494, ...
  [5] 1, 1, 2, 10, 69, 502, 3687, 27184, 201045, ...
		

Crossrefs

Cf. A377442 (extension for -n), A105633 (row -1), A152172 (row -2).
Cf. A000108 (row 0), A254316 (row 1).
Cf. A000012 (Hankel transform of row 0), A006720 (Hankel transform of row 1).
Cf. A330025 (Hankel transform of row -1), A328380 (Hankel transform of row -2).

Programs

  • PARI
    T(n, max_k) = Vec(-2*((n+1)*x-1)/((x-1)*(n*x-1)+((n*x^2-(n+1)*x+1)^2-4*x*(x-1)*((n+1)*x-1)+O(x^max_k))^(1/2)))

Formula

The generating function A(x) of row n satisfies: 0 = (x^3 - x^2)*A(x)^2 + (n*x^3 - (n+1)*x^2 - x)*A(x) + ((n+1)*x^2 - x).
Let d(m, n) = ( d(m-3, n)*d(m-2, n) + n)/( d(m-5, n)*d(m-4, n)*d(m-3, n)^2*d(m-2, n)^2*d(m-1, n) ) for m = even and d(m, n) = 1/( d(m-1, n)*d(m-2, n) ) for m = odd with d( < 1 , n) = 1, then the generating function of row n can be expanded as continued fractions: 1/(1 - x/(1 - d(0, n)*x/(1 - d(1, n)*x/(1 - d(2, n)*x/(...))))).
d(m, n)*d(m+1, n) is a rational solution in x of the elliptic equation y^2 = -4*x^3 + ((n+1)^2 + 8)*x^2 - 2*(n+3)*x + 1. The division polynomials for multiples of the point with x = 1, correspondent to the Hankel transform of row n in the array T(n, k).
T(n, k + 2) = Sum_{j >= 0} A377443(k, j)*n^j. This polynomial starts with A000108(k+2) + A371965(k+2)*n + ..., where A371965 is known to count peaks in the set of Catalan words of length k.

A057580 Maximal numbers of codewords in mixed code with 2 binary coordinates and n ternary coordinates with Hamming distance 3.

Original entry on oeis.org

1, 2, 4, 9, 22
Offset: 0

Views

Author

N. J. A. Sloane, Oct 04 2000

Keywords

Comments

Is this sequence equal to A105633? - Paul D. Hanna, Apr 17 2005

Crossrefs

A105849 Row sums of number triangle A105848.

Original entry on oeis.org

1, 3, 9, 28, 91, 308, 1079, 3888, 14332, 53810, 205075, 791250, 3084504, 12129506, 48056095, 191633546, 768535768, 3097705378, 12541851048, 50983349848, 208003171266, 851412895348, 3495527318559, 14390543072502, 59393240482618
Offset: 0

Views

Author

Paul Barry, Apr 22 2005

Keywords

Comments

Binomial transform of A105633.

Formula

G.f.: (1-2x-sqrt((1-6x+8x^2-4x^3)/(1-2x)))/(2x^2).
Conjecture: (n+2)*a(n) +2*(-4*n-3)*a(n-1) +4*(5*n-2)*a(n-2) +2*(-10*n+17)*a(n-3) +8*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 16 2012

A272794 The numbers of closed simply typable lambda terms of natural size n.

Original entry on oeis.org

0, 0, 1, 1, 2, 5, 13, 27, 74, 198, 508, 1371, 3809, 10477, 29116, 82419, 233748, 666201, 1914668, 5528622, 16019330, 46642245, 136326126, 399652720, 1175422931, 3467251920, 10258152021
Offset: 0

Views

Author

Pierre Lescanne, Jul 13 2016

Keywords

Comments

Natural size measure lambda terms as follows: all symbols are assigned size 1, namely applications, abstractions, successor symbols in de Bruijn indices and 0 symbol in de Bruijn indices (i.e., a de Bruijn index n is assigned size n+1).
Here we count the closed simply typable terms of natural size n. "Closed" means that there is no free index (no free bound variable). "Simply typable" means that lambda terms have a simple type.
The numbers are computed as follows: all the closed terms are generated and then filtered using a type reconstruction algorithm. The values given above are the only known values of the sequence.

Crossrefs

A275057 Numbers of closed lambda terms of natural size n.

Original entry on oeis.org

0, 0, 1, 1, 3, 6, 17, 41, 116, 313, 895, 2550, 7450, 21881, 65168, 195370, 591007, 1798718, 5510023, 16966529, 52506837, 163200904, 509323732, 1595311747, 5013746254, 15805787496, 49969942138, 158396065350, 503317495573, 1602973785463, 5116010587910, 16360492172347
Offset: 0

Views

Author

Pierre Lescanne, Jul 14 2016

Keywords

Comments

Natural size measure lambda terms as follows: all symbols are assigned size 1, namely applications, abstractions, successor symbols in de Bruijn indices and 0 symbol in de Bruijn indices (i.e., a de Bruijn index n is assigned size n+1).
Here we count the closed terms of natural size n, where "closed" means that there is no free index (no free bound variable).

Crossrefs

Programs

  • Mathematica
    L[0, ] = 0; L[n, m_] := L[n, m] = Sum[L[k, m]*L[n-k-1, m], {k, 0, n-1}] + L[n-1, m+1] + Boole[m >= n];
    a[n_] := L[n, 0];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 23 2017 *)

Formula

L(0,m) = 0.
L(n+1,m) = (Sum_{k=0..n} L(k,m)*L(n-k,m)) + L(n,m+1) + [m >= n+1], where [p(n,m)] = 1 if p(n,m) is true and [p(n,m)] = 0 if p(n,m) is false then one considers the sequence (L(n,0)).

A377442 Square array read by rising antidiagonals: T(n, k) = A377441(-n, k), an extension of A377441 into the domain of negative n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 4, 14, 1, 1, 2, 3, 9, 42, 1, 1, 2, 2, 6, 22, 132, 1, 1, 2, 1, 5, 12, 57, 429, 1, 1, 2, 0, 6, 6, 26, 154, 1430, 1, 1, 2, -1, 9, -2, 15, 59, 429, 4862, 1, 1, 2, -2, 14, -18, 24, 24, 138, 1223, 16796, 1, 1, 2, -3, 21, -48, 77, -23, 53, 332, 3550, 58786, 1, 1, 2, -4, 30, -98, 222, -226, 102, 107, 814, 10455, 208012, 1, 1, 2
Offset: 0

Views

Author

Thomas Scheuerle, Nov 04 2024

Keywords

Comments

The main entry for this array is A377441.

Examples

			The array begins:
  [ 0] 1, 1, 2,  5, 14,  42,  132,   429,   1430, ... = A000108
  [-1] 1, 1, 2,  4,  9,  22,   57,   154,    429, ... = A105633
  [-2] 1, 1, 2,  3,  6,  12,   26,    59,    138, ... = A152172
  [-3] 1, 1, 2,  2,  5,   6,   15,    24,     53, ...
  [-4] 1, 1, 2,  1,  6,  -2,   24,   -23,    102, ...
  [-5] 1, 1, 2,  0,  9, -18,   77,  -226,    765, ...
  [-6] 1, 1, 2, -1, 14, -48,  222,  -921,   3914, ...
  [-7] 1, 1, 2, -2, 21, -98,  531, -2756,  14373, ...
Row index written as [m] is corresponding to A377441(m, k).
		

Crossrefs

Cf. A377441 (The main entry for this sequence).
Cf. A105633 (row -1), A152172 (row -2).
Cf. A000108 (row 0), A254316 (row 1).
Cf. A000012 (Hankel transform of row 0), A006720 (Hankel transform of row 1).
Cf. A330025 (Hankel transform of row -1), A328380 (Hankel transform of row -2).

A274490 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n starting with k columns of length 1 (n>=2, k>=0).

Original entry on oeis.org

0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 3, 1, 0, 1, 22, 8, 3, 1, 0, 1, 62, 22, 8, 3, 1, 0, 1, 178, 62, 22, 8, 3, 1, 0, 1, 519, 178, 62, 22, 8, 3, 1, 0, 1, 1533, 519, 178, 62, 22, 8, 3, 1, 0, 1, 4578, 1533, 519, 178, 62, 22, 8, 3, 1, 0, 1, 13800, 4578, 1533, 519, 178, 62, 22, 8, 3, 1, 0, 1
Offset: 2

Views

Author

Emeric Deutsch, Jun 25 2016

Keywords

Comments

Number of entries in row n is n.
Sum of entries in row n = A082582(n).
T(n,0) = A188464(n-3) (n>=3).
Sum_{k>=0} k*T(n,k) = A105633(n-2).

Examples

			Row 4 is 3,1,0,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and, clearly, they start with 3, 1, 0, 0, 0 columns of length 1.
Triangle starts
0,1;
1,0,1;
3,1,0,1;
8,3,1,0,1;
22,8,3,1,0,1
		

Crossrefs

Programs

  • Maple
    G := (1-3*z+z^2+2*t*z^3-z^3-(1-z)*sqrt((1-z)*(1-3*z-z^2-z^3)))/(2*z*(1-t*z)): Gser := simplify(series(G, z = 0, 22)): for n from 2 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 18 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form
  • Mathematica
    nmax = 12;
    g = (1 - 3z + z^2 + 2t z^3 - z^3 - (1-z) Sqrt[(1-z)(1 - 3z - z^2 - z^3)])/ (2z (1 - t z));
    cc = CoefficientList[g + O[z]^(nmax+1), z];
    T[n_, k_] := Coefficient[cc[[n+1]], t, k];
    Table[T[n, k], {n, 2, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)

Formula

G.f.: (1-3*z+z^2+2*t*z^3-z^3-(1-z)*sqrt((1-z)*(1-3*z-z^2-z^3)))/(2*z*(1-t*z)).

A294450 The numbers of plain simply typable lambda terms of natural size n.

Original entry on oeis.org

0, 1, 2, 3, 8, 17, 42, 106, 287, 747, 2069, 5732, 16012, 45283, 129232, 370761, 1069972
Offset: 0

Views

Author

N. J. A. Sloane, Nov 22 2017

Keywords

Crossrefs

Previous Showing 11-19 of 19 results.