cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A371724 G.f. satisfies A(x) = ( 1 + x * A(x)^(1/3) * (1 + A(x)) )^(3/2).

Original entry on oeis.org

1, 3, 9, 31, 117, 468, 1949, 8361, 36693, 163956, 743388, 3411576, 15816609, 73967637, 348517539, 1652896367, 7884305829, 37800279504, 182055056428, 880410972156, 4273376488956, 20811901707192, 101666716335912, 498035242836144, 2446003588237193, 12041562653655453
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(n/2+3*k/2+3/2, n)/(n/3+k+1));

Formula

G.f.: B(x)^3 where B(x) is the g.f. of A106228.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n/2+3*k/2+3/2,n)/(n/3+k+1).

A053617 Number of permutations of length n which avoid the patterns 1234 and 1324.

Original entry on oeis.org

1, 1, 2, 6, 22, 90, 396, 1837, 8864, 44074, 224352, 1163724, 6129840, 32703074, 176351644, 959658200, 5262988330, 29057961666, 161374413196, 900792925199, 5050924332096, 28434661250454, 160644331001476, 910455895039056, 5174722258676440, 29486753617569684
Offset: 0

Views

Author

Moa Apagodu, Mar 20 2000

Keywords

Comments

These permutations have an "enumeration scheme" of depth 4, see D. Zeilberger's article in the links.
G.f. conjectured to be non-D-finite (see Albert et al. link). - Jay Pantone, Oct 01 2015
a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>2, 1>3, 2>4, 3>4} of length 4. That is, the number of length n permutations having no subsequences of length 4 in which the first element is the largest and the fourth element is the smallest. - Sergey Kitaev, Dec 10 2020

Crossrefs

Extensions

More terms from Andrew Baxter, May 20 2011

A365243 G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^3*A(x)^2).

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 11, 22, 45, 99, 226, 515, 1168, 2670, 6186, 14467, 33985, 80105, 189636, 451060, 1077225, 2580979, 6201602, 14942480, 36098349, 87417956, 212159347, 515937882, 1257048536, 3068146679, 7500995555, 18366760161, 45037590888, 110588510089
Offset: 0

Views

Author

Seiichi Manyama, Aug 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(n-k+1, n-3*k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * binomial(n-k+1,n-3*k)/(n-k+1).

A369477 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^2) ).

Original entry on oeis.org

1, 3, 14, 77, 464, 2964, 19717, 135131, 947549, 6765642, 49022225, 359545750, 2664127354, 19913283809, 149968276974, 1136856855549, 8668000962927, 66428474900907, 511414514214628, 3953420853213504, 30674783555852576, 238808419235022293, 1864869207177530320
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^2)^2))/x)
    
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(3*n-k+3,n-2*k).

A369479 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^3) ).

Original entry on oeis.org

1, 4, 25, 185, 1503, 12958, 116410, 1077872, 10213954, 98574454, 965545161, 9574235477, 95920415338, 969467658540, 9872949735243, 101211280459929, 1043597450013094, 10816134194658976, 112617367970103163, 1177413807406659659, 12355753915291229596
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^2)^3))/x)
    
  • PARI
    a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+3,k) * binomial(4*n-k+4,n-2*k).

A108443 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and have k triple descents (i.e., ddd's).

Original entry on oeis.org

1, 2, 6, 3, 1, 21, 24, 15, 5, 1, 80, 150, 145, 84, 31, 7, 1, 322, 857, 1145, 949, 528, 202, 53, 9, 1, 1347, 4692, 8096, 8801, 6598, 3551, 1394, 398, 81, 11, 1, 5798, 25102, 53457, 72338, 68594, 47805, 25092, 10019, 3040, 692, 115, 13, 1, 25512, 132484, 337132
Offset: 0

Views

Author

Emeric Deutsch and Paul D. Hanna, Jun 10 2005

Keywords

Comments

Row n has 2n-1 terms (n >= 1). Row sums yield A027307. Column 0 yields A106228.

Examples

			T(2,1) = 3 because we have uUddd, Uuddd and UdUddd.
Triangle begins:
    1;
    2;
    6,    3,    1;
   21,   24,   15,    5,    1;
   80,  150,  145,   84,   31,    7,    1;
  322,  857, 1145,  949,  528,  202,   53,    9,    1;
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y-1, min(2, t+1))*`if`(t=2, z, 1)+
           b(x-1, y+2, 0)+b(x-2, y+1, 0))))
        end:
    T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(3*n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Oct 06 2015
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Expand[If[y < 0 || y > x, 0, If[x == 0, 1, b[x - 1, y - 1, Min[2, t + 1]]*If[t == 2, z, 1] + b[x - 1, y + 2, 0] + b[x - 2, y + 1, 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[3*n, 0, 0]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
  • PARI
    {T(n,k)=local(G=1+z*O(z^n)+t*O(t^k));for(k=1,n, G=1+z*(t+z-t*z)^2*G^3+z*(2-t)*(t+z-t*z)*G^2+2*z*(1-t)*G); polcoeff(polcoeff(G,n,z),k,t)}

Formula

G.f. G = G(t,z) satisfies G = 1 + z(t + z - tz)^2*G^3 + z(2-t)(t + z - tz)G^2 + 2z(1-t)G.

A215067 Number of Motzkin n-paths avoiding odd-numbered steps that are up steps.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 21, 37, 80, 146, 322, 602, 1347, 2563, 5798, 11181, 25512, 49720, 114236, 224540, 518848, 1027038, 2384538, 4748042, 11068567, 22150519, 51817118, 104146733, 244370806, 493012682, 1159883685, 2347796965, 5536508864, 11239697816, 26560581688, 54061835288
Offset: 0

Views

Author

David Scambler, Aug 02 2012

Keywords

Comments

This sequence interleaves the counts of the closely related sequences A109081 and A106228.
a(n) is the number of (peakless) Motzkin paths of length n where every pair of matching up and down edges occupies positions of the same parity. Equivalently, the number of RNA secondary structures on n vertices where only vertices of the same parity can be matched. - Alexander Burstein, May 17 2021

Examples

			a(5) = 6: fUfFd, fUfDf, fUdUd, fUdFf, fFfUd, fFfFf showing odd-numbered steps in lower case.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y) +b(x-1, y+1) +
          `if`(irem(x, 2)=1, 0, b(x-1, y-1)) ))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 04 2013
  • Mathematica
    f[n_,x_,y_]:=f[n,x,y] = If[x>n||y<0,0,If[x==n&&y==0,1, If[EvenQ[x],0,f[n,x+1,y+1]] +f[n,x+1,y-1] + f[n,x+1,y]]]; Table[f[n,0,0],{n,0,35}]
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)+x^2*O(x^n)))/(2*(1+x+x^2+x^2*O(x^n)))),n)} \\ Paul D. Hanna, Aug 02 2012
    
  • Sage
    from mpmath import mp
    mp.dps = 25; mp.pretty = True
    def A215067(n) :
        m = n%2; r = n//2 if n>0 else 1
        return r^(1-m)*mp.hyper([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)
    [int(A215067(i)) for i in (0..32)]  # Peter Luschny, Aug 03 2012

Formula

a(2*n) = Sum_{k=0..n} binomial(n+k-1,n-k) * binomial(n,k)/(n-k+1);
a(2*n+1) = Sum_{k=0..n} binomial(n+k+1,n-k) * binomial(n,k)/(n-k+1).
G.f.: (1/x)*Series_Reversion( x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)))/(2*(1+x+x^2)) ). - Paul D. Hanna, Aug 02 2012
G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = (3+2*x+x^2 + sqrt((1+x^2)*(1+4*x+x^2)))/4. - Paul D. Hanna, Aug 02 2012
G.f. satisfies: Series_Reversion(x*A(x)) = x - x^2*F(-x) where F(x) = g.f. of A114465. - Paul D. Hanna, Aug 02 2012
a(n) = 3_F_2([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)*r^(1-m) for n>0 where m = n mod 2 and r = floor(n/2). - Peter Luschny, Aug 03 2012

A364723 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x*A(x)^4).

Original entry on oeis.org

1, 1, 2, 8, 38, 196, 1073, 6120, 35968, 216304, 1324676, 8232981, 51796538, 329229344, 2111031444, 13638557196, 88695018723, 580153216512, 3814285704000, 25192499164320, 167075960048996, 1112162062296061, 7428213584196010, 49766086788057256
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(n+3*k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(n+3*k,n-1-k) for n > 0.

A364734 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x*A(x)^5).

Original entry on oeis.org

1, 1, 2, 9, 48, 276, 1687, 10750, 70597, 474478, 3247844, 22563904, 158693152, 1127661358, 8083795761, 58390722901, 424562043703, 3104994695198, 22825260066996, 168564068029385, 1249985066423749, 9303815610715531, 69483859839881494, 520527161650519576
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(n+4*k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(n+4*k,n-1-k) for n > 0.

A370891 G.f. satisfies A(x) = ( 1 + x * A(x)^(1/4) * (1 + A(x)^(3/4)) )^2.

Original entry on oeis.org

1, 4, 14, 52, 205, 844, 3588, 15632, 69434, 313264, 1431650, 6613732, 30834548, 144895284, 685566370, 3263309844, 15616322995, 75085908112, 362563417968, 1757412095456, 8548129677400, 41710100368160, 204110896990686, 1001480947876276, 4925833177966164
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, binomial(n, k)*binomial(n/2+3*k/2+2, n)/(n/2+3*k/2+2));

Formula

G.f.: B(x)^4 where B(x) is the g.f. of A106228.
a(n) = 2 * Sum_{k=0..n} binomial(n,k) * binomial(n/2+3*k/2+2,n)/(n/2+3*k/2+2).
Previous Showing 21-30 of 38 results. Next