A371724
G.f. satisfies A(x) = ( 1 + x * A(x)^(1/3) * (1 + A(x)) )^(3/2).
Original entry on oeis.org
1, 3, 9, 31, 117, 468, 1949, 8361, 36693, 163956, 743388, 3411576, 15816609, 73967637, 348517539, 1652896367, 7884305829, 37800279504, 182055056428, 880410972156, 4273376488956, 20811901707192, 101666716335912, 498035242836144, 2446003588237193, 12041562653655453
Offset: 0
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(n/2+3*k/2+3/2, n)/(n/3+k+1));
A053617
Number of permutations of length n which avoid the patterns 1234 and 1324.
Original entry on oeis.org
1, 1, 2, 6, 22, 90, 396, 1837, 8864, 44074, 224352, 1163724, 6129840, 32703074, 176351644, 959658200, 5262988330, 29057961666, 161374413196, 900792925199, 5050924332096, 28434661250454, 160644331001476, 910455895039056, 5174722258676440, 29486753617569684
Offset: 0
- Andrew Baxter and Jay Pantone, Table of n, a(n) for n = 0..600 (terms n=1..100 from Andrew Baxter)
- Michael H. Albert, Cheyne Homberger, Jay Pantone, Nathaniel Shar, Vincent Vatter, Generating Permutations with Restricted Containers, arXiv:1510.00269 [math.CO], 2015.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Kremer, Darla and Shiu, Wai Chee, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
- D. Zeilberger, Enumeration schemes and more importantly their automatic generation, Annals of Combinatorics 2 (1998) 185-195. The link is to an overview on Doron Zeilberger's home page; there is a local copy here [Pdf file only, no active links]
A365243
G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^3*A(x)^2).
Original entry on oeis.org
1, 1, 1, 1, 2, 5, 11, 22, 45, 99, 226, 515, 1168, 2670, 6186, 14467, 33985, 80105, 189636, 451060, 1077225, 2580979, 6201602, 14942480, 36098349, 87417956, 212159347, 515937882, 1257048536, 3068146679, 7500995555, 18366760161, 45037590888, 110588510089
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(n-k+1, n-3*k)/(n-k+1));
A369477
Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^2) ).
Original entry on oeis.org
1, 3, 14, 77, 464, 2964, 19717, 135131, 947549, 6765642, 49022225, 359545750, 2664127354, 19913283809, 149968276974, 1136856855549, 8668000962927, 66428474900907, 511414514214628, 3953420853213504, 30674783555852576, 238808419235022293, 1864869207177530320
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^2)^2))/x)
-
a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
A369479
Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^3) ).
Original entry on oeis.org
1, 4, 25, 185, 1503, 12958, 116410, 1077872, 10213954, 98574454, 965545161, 9574235477, 95920415338, 969467658540, 9872949735243, 101211280459929, 1043597450013094, 10816134194658976, 112617367970103163, 1177413807406659659, 12355753915291229596
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^2)^3))/x)
-
a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
A108443
Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and have k triple descents (i.e., ddd's).
Original entry on oeis.org
1, 2, 6, 3, 1, 21, 24, 15, 5, 1, 80, 150, 145, 84, 31, 7, 1, 322, 857, 1145, 949, 528, 202, 53, 9, 1, 1347, 4692, 8096, 8801, 6598, 3551, 1394, 398, 81, 11, 1, 5798, 25102, 53457, 72338, 68594, 47805, 25092, 10019, 3040, 692, 115, 13, 1, 25512, 132484, 337132
Offset: 0
T(2,1) = 3 because we have uUddd, Uuddd and UdUddd.
Triangle begins:
1;
2;
6, 3, 1;
21, 24, 15, 5, 1;
80, 150, 145, 84, 31, 7, 1;
322, 857, 1145, 949, 528, 202, 53, 9, 1;
-
b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0,
`if`(x=0, 1, b(x-1, y-1, min(2, t+1))*`if`(t=2, z, 1)+
b(x-1, y+2, 0)+b(x-2, y+1, 0))))
end:
T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(3*n, 0$2)):
seq(T(n), n=0..8); # Alois P. Heinz, Oct 06 2015
-
b[x_, y_, t_] := b[x, y, t] = Expand[If[y < 0 || y > x, 0, If[x == 0, 1, b[x - 1, y - 1, Min[2, t + 1]]*If[t == 2, z, 1] + b[x - 1, y + 2, 0] + b[x - 2, y + 1, 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[3*n, 0, 0]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
-
{T(n,k)=local(G=1+z*O(z^n)+t*O(t^k));for(k=1,n, G=1+z*(t+z-t*z)^2*G^3+z*(2-t)*(t+z-t*z)*G^2+2*z*(1-t)*G); polcoeff(polcoeff(G,n,z),k,t)}
A215067
Number of Motzkin n-paths avoiding odd-numbered steps that are up steps.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 10, 21, 37, 80, 146, 322, 602, 1347, 2563, 5798, 11181, 25512, 49720, 114236, 224540, 518848, 1027038, 2384538, 4748042, 11068567, 22150519, 51817118, 104146733, 244370806, 493012682, 1159883685, 2347796965, 5536508864, 11239697816, 26560581688, 54061835288
Offset: 0
a(5) = 6: fUfFd, fUfDf, fUdUd, fUdFf, fFfUd, fFfFf showing odd-numbered steps in lower case.
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, b(x-1, y) +b(x-1, y+1) +
`if`(irem(x, 2)=1, 0, b(x-1, y-1)) ))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Apr 04 2013
-
f[n_,x_,y_]:=f[n,x,y] = If[x>n||y<0,0,If[x==n&&y==0,1, If[EvenQ[x],0,f[n,x+1,y+1]] +f[n,x+1,y-1] + f[n,x+1,y]]]; Table[f[n,0,0],{n,0,35}]
-
{a(n)=polcoeff((1/x)*serreverse(x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)+x^2*O(x^n)))/(2*(1+x+x^2+x^2*O(x^n)))),n)} \\ Paul D. Hanna, Aug 02 2012
-
from mpmath import mp
mp.dps = 25; mp.pretty = True
def A215067(n) :
m = n%2; r = n//2 if n>0 else 1
return r^(1-m)*mp.hyper([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)
[int(A215067(i)) for i in (0..32)] # Peter Luschny, Aug 03 2012
A364723
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x*A(x)^4).
Original entry on oeis.org
1, 1, 2, 8, 38, 196, 1073, 6120, 35968, 216304, 1324676, 8232981, 51796538, 329229344, 2111031444, 13638557196, 88695018723, 580153216512, 3814285704000, 25192499164320, 167075960048996, 1112162062296061, 7428213584196010, 49766086788057256
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(n+3*k, n-1-k))/n);
A364734
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x*A(x)^5).
Original entry on oeis.org
1, 1, 2, 9, 48, 276, 1687, 10750, 70597, 474478, 3247844, 22563904, 158693152, 1127661358, 8083795761, 58390722901, 424562043703, 3104994695198, 22825260066996, 168564068029385, 1249985066423749, 9303815610715531, 69483859839881494, 520527161650519576
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(n+4*k, n-1-k))/n);
A370891
G.f. satisfies A(x) = ( 1 + x * A(x)^(1/4) * (1 + A(x)^(3/4)) )^2.
Original entry on oeis.org
1, 4, 14, 52, 205, 844, 3588, 15632, 69434, 313264, 1431650, 6613732, 30834548, 144895284, 685566370, 3263309844, 15616322995, 75085908112, 362563417968, 1757412095456, 8548129677400, 41710100368160, 204110896990686, 1001480947876276, 4925833177966164
Offset: 0
-
a(n) = 2*sum(k=0, n, binomial(n, k)*binomial(n/2+3*k/2+2, n)/(n/2+3*k/2+2));
Comments