cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A272931 a(n) = 2^(n+1)*cos(n*arctan(sqrt(15))).

Original entry on oeis.org

2, 1, -7, -11, 17, 61, -7, -251, -223, 781, 1673, -1451, -8143, -2339, 30233, 39589, -81343, -239699, 85673, 1044469, 701777, -3476099, -6283207, 7621189, 32754017, 2269261, -128746807, -137823851, 377163377, 928458781, -580194727, -4294029851, -1973250943
Offset: 0

Views

Author

Peter Luschny, May 11 2016

Keywords

Comments

For n >= 1, |a(n)| is the unique odd positive solution y to 4^(n+1) = 15*x^2 + y^2. The value of x is |A106853(n-1)|. - Jianing Song, Jan 22 2019

Crossrefs

Programs

  • Maple
    seq(simplify(((1-I*sqrt(15))^n + (1+I*sqrt(15))^n)/2^n), n=0..32);
  • Mathematica
    LinearRecurrence[{1, -4}, {2, 1}, 33]
  • PARI
    Vec((2 - x) / (1 - x + 4*x^2) + O(x^40)) \\ Colin Barker, Jan 22 2019
  • Sage
    [lucas_number2(i, 1, 4) for i in range(33)]
    

Formula

Let a(x) = x/2 - i*sqrt(15)*x/2 and b(x) = x/2 + i*sqrt(15)*x/2, then:
a(n) = a(1)^n + b(1)^n.
a(n) = n! [x^n] exp(a(x)) + exp(b(x)).
a(n) = [x^n] (2 - x)/(4*x^2 - x + 1).
a(n) = Sum_{k=0..floor(n/2)} (-4)^k*n*(n - k - 1)!/(k!*(n - 2*k)!) for n >= 1.
For n >= 1, 15*a(n)^2 + A106853(n-1)^2 = 4^(n+1). - Jianing Song, Jan 22 2019
a(n) = a(n-1) - 4*a(n-2) for n>1. - Colin Barker, Jan 22 2019
a(n) = 2*A106853(n) - A106853(n-1). - R. J. Mathar, Aug 19 2022

A128100 Triangle read by rows: T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 5, 1, 8, 10, 3, 13, 20, 9, 1, 21, 38, 22, 4, 34, 71, 51, 14, 1, 55, 130, 111, 40, 5, 89, 235, 233, 105, 20, 1, 144, 420, 474, 256, 65, 6, 233, 744, 942, 594, 190, 27, 1, 377, 1308, 1836, 1324, 511, 98, 7, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 987, 3970
Offset: 0

Views

Author

Emeric Deutsch, Feb 18 2007

Keywords

Comments

Row sums are the Jacobsthal numbers (A001045). Column 0 yields the Fibonacci numbers (A000045); the other columns yield convolved Fibonacci numbers (A001629, A001628, A001872, A001873, etc.). Sum_{k=0..floor(n/2)} k*T(n,k) = A073371(n-2).
Triangle T(n,k), with zeros omitted, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 24 2012
Riordan array (1/(1-x-x^2), x^2/(1-x-x^2)), with zeros omitted. - Philippe Deléham, Feb 06 2012
Diagonal sums are A000073(n+2) (tribonacci numbers). - Philippe Deléham, Feb 16 2014
Number of induced subgraphs of the Fibonacci cube Gamma(n-1) that are isomorphic to the hypercube Q_k. Example: row n=4 is 5, 5, 1; indeed, the Fibonacci cube Gamma(3) is a square with an additional pendant edge attached to one of its vertices; it has 5 vertices (i.e., Q_0's), 5 edges (i.e., Q_1's) and 1 square (i.e., Q_2). - Emeric Deutsch, Aug 12 2014
Row n gives the coefficients of the polynomial p(n,x) defined as the numerator of the rational function given by f(n,x) = 1 + (x + 1)/f(n-1,x), where f(x,0) = 1. Conjecture: for n > 2, p(n,x) is irreducible if and only if n is a (prime - 2). - Clark Kimberling, Oct 22 2014

Examples

			Triangle starts:
   1;
   1;
   2,  1;
   3,  2;
   5,  5,  1;
   8, 10,  3;
  13, 20,  9,  1;
  21, 38, 22,  4;
From _Philippe Deléham_, Jan 24 2012: (Start)
Triangle (1, 1, -1, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, ...) begins:
   1;
   1,  0;
   2,  1,  0;
   3,  2,  0,  0;
   5,  5,  1,  0,  0;
   8, 10,  3,  0,  0,  0;
  13, 20,  9,  1,  0,  0,  0;
  21, 38, 22,  4,  0,  0,  0,  0; (End)
From _Clark Kimberling_, Oct 22 2014: (Start)
Here are the first 4 polynomials p(n,x) as in Comment and generated by Mathematica program:
  1
  2 +  x
  3 + 2x
  5 + 5x + x^2. (End)
		

Crossrefs

Programs

  • Maple
    G:=1/(1-z-(1+t)*z^2): Gser:=simplify(series(G,z=0,19)): for n from 0 to 16 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 16 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    p[x_, n_] := 1 + (x + 1)/p[x, n - 1]; p[x_, 1] = 1;
    Numerator[Table[Factor[p[x, n]], {n, 1, 20}]]  (* Clark Kimberling, Oct 22 2014 *)

Formula

G.f.: 1/(1-z-(1+t)z^2).
Sum_{k=0..n} T(n,k)*x^k = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, and -13, respectively. - Philippe Deléham, Jan 24 2012
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1). - Philippe Deléham, Jan 24 2012
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k+1+ x*(1+y))*x/((2*k+2+ x*(1+y))*x + 1/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
T(n,k) = Sum_{i=k..floor(n/2)} binomial(n-i,i)*binomial(i,k). See Corollary 3.3 in the Klavzar et al. link. - Emeric Deutsch, Aug 12 2014

A133631 a(n) = a(n-1) - 4*a(n-2), a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, -2, -10, -2, 38, 46, -106, -290, 134, 1294, 758, -4418, -7450, 10222, 40022, -866, -160954, -157490, 486326, 1116286, -829018, -5294162, -1978090, 19198558, 27110918, -49683314, -158126986, 40606270, 673114214, 510689134, -2181767722, -4224524258
Offset: 0

Views

Author

Philippe Deléham, Dec 28 2007

Keywords

Examples

			G.f. = 1 + 2*x - 2*x^2 - 10*x^3 - 2*x^4 + 38*x^5 + 46*x^6 - 106*x^7 + ... - _Michael Somos_, Oct 24 2023
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 2^n * ChebyshevU[n, 1/4] + 2^(n-1) * ChebyshevU[n-1, 1/4]; (* Michael Somos, Oct 24 2023 *)
    LinearRecurrence[{1,-4},{1,2},50] (* Harvey P. Dale, Feb 01 2025 *)
  • PARI
    {a(n) = 2^n*polchebyshev(n, 2, 1/4) + 2^(n-1)*polchebyshev(n-1, 2, 1/4)}; /* Michael Somos, Oct 24 2023 */

Formula

G.f.: (1+x)/(1-x+4*x^2).
a(n) = Sum_{k=0..n} A133607(n,k)*2^k. - Philippe Deléham, Dec 29 2007
a(n) = 2^n*U(n, 1/4) + 2^(n-1)*U(n-1, 1/4) = A106853(n) + A106853(n-1) where U is the Chebyshev polynomial of the 2nd kind. - Michael Somos, Oct 24 2023

A156857 Expansion of (1+2*x)/(1+x+4*x^2)^2.

Original entry on oeis.org

1, 0, -9, 10, 45, -108, -125, 702, -135, -3320, 4239, 11250, -31931, -18180, 165915, -92762, -651375, 1101168, 1747495, -6710310, -694179, 30182500, -28394829, -101934450, 229069225, 203510232, -1198850625, 364506562, 4767453045
Offset: 0

Views

Author

Paul Barry, Feb 17 2009

Keywords

Comments

Hankel transform of A091526.

Crossrefs

Programs

  • Magma
    I:=[1,0,-9,10]; [n le 4 select I[n] else (-1)*(2*Self(n-1) +9*Self(n-2) +8*Self(n-3) +16*Self(n-4)): n in [1..41]]; // G. C. Greubel, Jan 28 2022
    
  • Mathematica
    LinearRecurrence[{-2,-9,-8,-16}, {1,0,-9,10}, 41] (* or *)
    A156857[n_]:= (-2)^n*Sum[ChebyshevU[n-j, 1/4]*(ChebyshevU[j, 1/4] - ChebyshevU[j-1, 1/4]), {j,0,n}];
    Table[A156857[n], {n, 0, 40}] (* G. C. Greubel, Jan 28 2022 *)
  • Sage
    def A156857(n): return (-2)^n*sum( chebyshev_U(n-j, 1/4)*(chebyshev_U(j, 1/4) - chebyshev_U(j-1, 1/4)) for j in (0..n))
    [A156857(n) for n in (0..40)] # G. C. Greubel, Jan 28 2022

Formula

G.f.: (1 +2*x)/(1 +2*x +9*x^2 +8*x^3 +16*x^4).
a(n) = (-2)*Sum_{j=0..n} ChebyshevU(n-j, 1/4)*(ChebyshevU(j, 1/4) - ChebyshevU(j-1, 1/4)). - G. C. Greubel, Jan 28 2022

A231114 Numbers k dividing u(k), where the Lucas sequence is defined u(i) = u(i-1) - 4*u(i-2) with initial conditions u(0)=0, u(1)=1.

Original entry on oeis.org

1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, 135, 171, 225, 243, 375, 405, 435, 465, 513, 625, 675, 729, 855, 1125, 1215, 1305, 1395, 1539, 1875, 2025, 2175, 2187, 2325, 2565, 3125, 3249, 3375, 3645, 3725, 3915, 4005, 4185, 4275, 4617, 5625, 6075, 6327, 6525, 6561
Offset: 1

Views

Author

Thomas M. Bridge, Nov 06 2013

Keywords

Comments

Every term (except leading term) is divisible by at least one of 3 or 5.
Furthermore, this sequence contains 3^i*5^j for all i, j >= 0, that is, A003593 is a subsequence.

Examples

			The sequence u(i) begins 0, 1, 1, -3, -7, 5, 33. Only for k = 1, 3, 5 does k divides u(k).
		

Crossrefs

Cf. A003593 (subsequence), A106853 (Lucas sequence).

Programs

  • Mathematica
    nn = 10000; s = LinearRecurrence[{1, -4}, {1, 1}, nn]; t = {}; Do[If[Mod[s[[n]], n] == 0, AppendTo[t, n]], {n, nn}]; t (* T. D. Noe, Nov 06 2013 *)
Previous Showing 11-15 of 15 results.