cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106853 Expansion of 1/(1 - x + 4*x^2).

Original entry on oeis.org

1, 1, -3, -7, 5, 33, 13, -119, -171, 305, 989, -231, -4187, -3263, 13485, 26537, -27403, -133551, -23939, 510265, 606021, -1435039, -3859123, 1881033, 17317525, 9793393, -59476707, -98650279, 139256549, 533857665, -23168531, -2158599191, -2065925067
Offset: 0

Views

Author

Paul Barry, May 08 2005

Keywords

Comments

Row sums of Riordan array (1,x(1-4x)). In general, a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,n-k)*r^(n-k) yields the row sums of the Riordan array (1,x(1-kx)).
For n >= 1, a(n) equals the determinant of the n X n matrix with 2's along the superdiagonal and the subdiagonal, and 1's along the main diagonal, and 0's everywhere else. - John M. Campbell, Jun 04 2011
For n >= 1, |a(n-1)| is the unique odd positive solution x to 4^(n+1) = 15*x^2 + y^2. The value of y is |A272931(n)|. - Jianing Song, Jan 22 2019
Define the sequence u(n) = (u(n-1) + u(n-2))/u(n-3) with u(1) = 1, u(2) = -1, u(3) = 2. Then u(4*n) = 2*(a(n-1)+4*a(n-2))*a(n-1)/(a(n)+a(n-1))/a(n), u(4*n+1) = a(n+1)/a(n), u(4*n+2) = -1, u(4*n+3) = 4*(a(n)+a(n-1))/(a(n)+a(n+1)). For example, a(2) = -3, a(3) = -7 and u(8) = 5/3, u(9) = 7/3, u(10) = -1. - Michael Somos, Oct 24 2023

Examples

			G.f. = 1 + x - 3*x^2 - 7*x^3 + 5*x^4 + 33*x^5 + 13*x^6 - 119*x^7 - 171*x^8 + ... - _Michael Somos_, Oct 24 2023
		

Crossrefs

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 14 2018
    
  • Maple
    f:= gfun:-rectoproc({a(n)=a(n-1)-4*a(n-2), a(0)=1,a(1)=1},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Jan 15 2018
  • Mathematica
    Join[{a=1,b=1},Table[c=b-4*a;a=b;b=c,{n,80}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011 *)
    CoefficientList[Series[1/(1-x*(1-4x)),{x,0,40}],x] (* or *) LinearRecurrence[ {1,-4},{1,1},40] (* Harvey P. Dale, May 26 2013 *)
    a[ n_] := 2^n * ChebyshevU[n, 1/4]; (* Michael Somos, Oct 24 2023 *)
  • PARI
    x='x+O('x^30); Vec(1/(1-x+4*x^2)) \\ G. C. Greubel, Jan 14 2018
    
  • PARI
    {a(n) = 2^n*polchebyshev(n, 2, 1/4)}; /* Michael Somos, Oct 24 2023 */
  • Sage
    [lucas_number1(n,1,4) for n in range(1, 36)] # Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: 1/(1 - x + 4*x^2).
a(n) = 2^n*(cos(2*n*arctan(sqrt(15)/5))+sqrt(15)*sin(2*n*arctan(sqrt(15)/5))/15).
a(n) = ((1 + sqrt(-15))^(n+1) - (1 - sqrt(-15))^(n+1))/(2^(n+1)*sqrt(-15)).
a(n) = Sum_{k=0..n} ((-1)^(n-k)*binomial(k, n-k)*4^(n-k)).
a(n) = a(n-1) - 4*a(n-2), a(0) = 1, a(1) = 1. - Philippe Deléham, Oct 21 2008
a(n) = Sum_{k=0..n} A109466(n,k)*4^(n-k). - Philippe Deléham, Oct 25 2008
G.f.: 1/(1 - 2*x)^2/(1 + 3*x*G(0)/2), where G(k) = 1 + 1/(1 - x/(x + (k + 1)/(2*k + 4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
For n >= 1, 15*A272931(n)^2 + a(n-1)^2 = 4^(n+1). - Jianing Song, Jan 22 2019
a(n) = Product_{k=1..n} (1 + 4*cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
a(n) = 2^n * U(n, 1/4), where U(n, x) is the Chebyshev polynomial of the second kind. - Federico Provvedi, Mar 28 2022

A335840 Expansion of x*(1+2*x)/((1-2*x)*(1-x+4*x^2)).

Original entry on oeis.org

1, 5, 9, 5, 1, 45, 169, 245, 81, 125, 1849, 5445, 6241, 845, 8649, 70805, 167281, 146205, 1369, 465125, 2556801, 4890605, 3052009, 266805, 21613201, 87654845, 135419769, 53235845, 48427681, 909226125, 2862999049, 3521061845, 659000241, 3754622045
Offset: 1

Views

Author

Philippe Deléham, Sep 18 2020

Keywords

Comments

Numbers in the sequence are alternatively products of squares or five times a product of squares.

Examples

			a(11) = 43^2, a(12) = 5*3^2*11^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-6,8},{1,5,9},34] (* Stefano Spezia, Sep 19 2020 *)

Formula

G.f.: x*(1+2*x)/((1-2*x)*(1-x+4*x^2)).
a(n) = 3*a(n-1) - 6*a(n-2) + 8*a(n-3) for n > 3.
a(n) = A112259(n)/(A112260(n))^2.
3*a(n) = 2^(n+1) - A272931(n). - R. J. Mathar, Aug 19 2022
Showing 1-2 of 2 results.