cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A337285 a(n) = Sum_{i=1..n} (i-1)^2*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.

Original entry on oeis.org

0, 1, 5, 41, 297, 1522, 7606, 35830, 159734, 691175, 2911275, 11995471, 48573775, 193800376, 763577276, 2976338876, 11493413820, 44020618429, 167385941185, 632387189285, 2375420846885, 8876467428110, 33013780952786, 122261706093330, 451010242361106, 1657768413841731, 6073328651742855
Offset: 1

Views

Author

N. J. A. Sloane, Sep 12 2020

Keywords

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202. (Note that this paper uses an offset for the tribonacci numbers that is different from that used in A000073.)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1 -2*x+15*x^2+62*x^3-97*x^4+96*x^5+73*x^6-64*x^7-57*x^8-194*x^9-127*x^10-138*x^11 -55*x^12-12*x^13-9*x^14-4*x^15)/((1-x)*(1+x+x^2-x^3)^3*(1-3*x-x^2 -x^3)^3) )); // G. C. Greubel, Nov 22 2021
    
  • Mathematica
    T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]]; (* A000073 *)
    A337285[n_]:= Sum[j^2*T[j+1]^2, {j,0,n-1}];
    Table[A337285[n], {n, 40}] (* G. C. Greubel, Nov 22 2021 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A337285(n): return sum( j^2*T(j+1)^2 for j in (0..n-1) )
    [A337285(n) for n in (1..40)] # G. C. Greubel, Nov 22 2021

Formula

From G. C. Greubel, Nov 22 2021: (Start)
a(n) = A337286(n) - 2*A337283(n) + A107239(n).
a(n) = Sum_{j=0..n-1} j^2*A000073(j+1)^2.
G.f.: x^2*(1 -2*x +15*x^2 +62*x^3 -97*x^4 +96*x^5 +73*x^6 -64*x^7 -57*x^8 -194*x^9 -127*x^10 -138*x^11 -55*x^12 -12*x^13 -9*x^14 -4*x^15)/((1-x)*(1 +x +x^2 -x^3)^3*(1 -3*x -x^2 -x^3)^3). (End)

A140973 Numbers k such that arithmetic mean of squares of the first k tribonacci numbers is an integer.

Original entry on oeis.org

1, 2, 8, 15, 16, 18, 22, 32, 47, 48, 53, 58, 64, 70, 77, 78, 80, 94, 95, 96, 103, 106, 128, 138, 163, 199, 206, 256, 257, 266, 269, 311, 326, 330, 352, 358, 385, 397, 398, 401, 419, 421, 499, 512, 514, 538, 587, 599, 617, 622, 640, 672, 683, 757, 768, 770, 773
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 27 2008

Keywords

Comments

Can the arithmetic mean of the tribonacci numbers (T(0)+...+T(k-1)) / k be an integer?
The arithmetic means are integers for the first 1, 2, 47, 53, 94, 103, 106, ... (A141579) tribonacci numbers. - R. J. Mathar, Aug 04 2008

Crossrefs

Cf. A107239. - R. J. Mathar, Aug 04 2008

Programs

Formula

Numbers k such that (T(0)^2+ T(1)^2+ ... + T(k-1)^2) / k is an integer, where T(i) = i-th tribonacci number.

Extensions

a(1)-a(2) inserted and a(32) onwards added by R. J. Mathar, Aug 04 2008

A343138 Array A(k, n) read by descending antidiagonals: A(k, n) = Sum_{m=0..n} F(k, m)^2, where F are the k-generalized Fibonacci numbers A092921.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 6, 2, 1, 0, 1, 5, 15, 6, 2, 1, 0, 1, 6, 40, 22, 6, 2, 1, 0, 1, 7, 104, 71, 22, 6, 2, 1, 0, 1, 8, 273, 240, 86, 22, 6, 2, 1, 0, 1, 9, 714, 816, 311, 86, 22, 6, 2, 1, 0, 1, 10, 1870, 2752, 1152, 342, 86, 22, 6, 2, 1, 0
Offset: 0

Views

Author

Peter Luschny, Apr 06 2021

Keywords

Examples

			Array starts:
  n = 0  1  2  3   4   5    6     7     8     9      10
------------------------------------------------------------
[k=0] 0, 1, 1, 1,  1,  1,   1,    1,    1,     1,     1, ...  [A057427]
[k=1] 0, 1, 2, 3,  4,  5,   6,    7,    8,     9,    10, ...  [A001477]
[k=2] 0, 1, 2, 6, 15, 40, 104,  273,  714,  1870,  4895, ...  [A001654]
[k=3] 0, 1, 2, 6, 22, 71, 240,  816, 2752,  9313, 31514, ...  [A107239]
[k=4] 0, 1, 2, 6, 22, 86, 311, 1152, 4288, 15952, 59216, ...
[k=5] 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, ...
[k=6] 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, ...
[k=7] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, ...
[k=8] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, ...
[k=9] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ...
[...]
[ oo] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ...  [A047849]
Note that the first parameter in A(k, n) refers to rows, and the second parameter refers to columns, as always. The usual naming convention for the indices is not adhered to because the row sequences are the sums of the squares of the k-bonacci numbers.
		

References

  • Greg Dresden and Yichen Wang, Sums and convolutions of k-bonacci and k-Lucas numbers, draft 2021.

Crossrefs

Programs

  • Maple
    F := (k, n) -> (F(k, n) := `if`(n<2, n, add(F(k, n-j), j = 1..min(k, n)))):
    A := (k, n) -> add(F(k, m)^2, m = 0..n):
    seq(seq(A(k, n-k), k=0..n), n = 0..11);
    # The following two functions implement Russell Jay Hendel's formula for k >= 2:
    T := (k, n) -> (n + 3)*(k - n) - 4:
    H := (k, n) -> (2*add(j*add((m-k+1)*F(k, n+j)*F(k, n+m), m = j+1..k), j = 1..k-1)
    - add(T(k, j-1)*F(k, n+j)^2, j = 1..k) + (k - 2))/(2*k - 2):
    seq(lprint([k], seq(H(k, n), n = 0..11)), k=2..9); # Peter Luschny, Apr 07 2021
  • Mathematica
    A343138[k_, len_] := Take[Accumulate[LinearRecurrence[PadLeft[{1}, k, 1], PadLeft[{1}, k], len + k]^2], -len - 2];
    A343138[0, len_] := Table[Boole[n != 0], {n, 0, len}];
    A343138[1, len_] := Table[n, {n, 0, len}];
    (* Table: *) Table[A343138[k, 12], {k, 0, 9}]
    (* Sequence / descending antidiagonals: *)
    Table[Table[Take[A343138[j, 12], {k + 1 - j, k + 1 - j}], {j, 0, k}], {k, 0, 10}] // Flatten (* Georg Fischer, Apr 08 2021 *)

Formula

Russell Jay Hendel gives the following representation, valid for k >= 2:
A(n, k) = Sum_{m=0..n} F(k, m)^2 = (1/(2*k-2)) * (2*Sum_{j=1..k-1}(j*Sum_{m=j+1..k} (m-k+1) * F(k, n+j) * F(k, n+m)) - Sum_{j=1..k}(A343125(k, j-1) * F(k, n+j)^2) + (k - 2)). - Peter Luschny, Apr 07 2021

A228609 Partial sums of the cubes of the tribonacci sequence A000073.

Original entry on oeis.org

0, 1, 2, 10, 74, 417, 2614, 16438, 101622, 633063, 3941012, 24511836, 152535900, 949133883, 5905611508, 36746590964, 228646935796, 1422699232325, 8852413871022, 55082039340022, 342734883853750, 2132586518002125
Offset: 0

Views

Author

R. J. Mathar, Dec 18 2013

Keywords

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (-1 + 3 x + 11 x^3 - 5 x^4 + x^5 - 3 x^6 + x^7 + 5 x^2)/((x^3 - 5 x^2 + 7 x - 1) (x^6 + 4 x^5 + 11 x^4 + 12 x^3 + 11 x^2 + 4 x + 1) (x - 1)^2), {x, 0, 21}], x] (* Michael De Vlieger, Jan 12 2022 *)
    Accumulate[LinearRecurrence[{1,1,1},{0,1,1},30]^3]  (* or *) LinearRecurrence[ {5,5,25,-58,26,-42,54,-13,1,-3,1},{0,1,2,10,74,417,2614,16438,101622,633063,3941012},30] (* Harvey P. Dale, Sep 11 2022 *)
  • PARI
    T(n)=([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
    a(n) = sum(k=1, n, T(k)^3); \\ Michel Marcus, Jan 12 2022

Formula

a(n) = a(n-1) + (A000073(n))^3.
G.f.: x*(-1+3*x+11*x^3-5*x^4+x^5-3*x^6+x^7+5*x^2) / ( (x^3-5*x^2+7*x-1) *(x^6+4*x^5+11*x^4+12*x^3+11*x^2+4*x+1) *(x-1)^2 )
Previous Showing 11-14 of 14 results.