cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A133336 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 5, 1, 0, 14, 21, 9, 1, 0, 42, 84, 56, 14, 1, 0, 132, 330, 300, 120, 20, 1, 0, 429, 1287, 1485, 825, 225, 27, 1, 0, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 0, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 0, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2007

Keywords

Comments

Mirror image of triangle A086810; another version of A126216.
Equals A131198*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007
Diagonal sums: A119370. - Philippe Deléham, Nov 09 2009

Examples

			Triangle begins:
    1;
    1,    0;
    2,    1,    0;
    5,    5,    1,   0;
   14,   21,    9,   1,   0;
   42,   84,   56,  14,   1,  0;
  132,  330,  300, 120,  20,  1, 0;
  429, 1287, 1485, 825, 225, 27, 1, 0;
		

Crossrefs

Programs

  • Magma
    [[Binomial(n-1,k)*Binomial(2*n-k,n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Table[Binomial[n-1,k]*Binomial[2*n-k,n]/(n+1), {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n-1,k)*binomial(2*n-k,n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*(-2)^k*5^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
T(n,k) = binomial(n-1,k)*binomial(2n-k,n)/(n+1), k <= n. - Philippe Deléham, Nov 02 2009

A349256 G.f. A(x) satisfies A(x) = 1 / ((1 + x) * (1 - 3 * x * A(x)^2)).

Original entry on oeis.org

1, 2, 19, 206, 2563, 34415, 486370, 7128488, 107364421, 1651615568, 25840137724, 409898503763, 6577319627506, 106571487893024, 1741193467526782, 28653852176675324, 474521786894159593, 7902112425718228064, 132243695376774536755, 2222925664652778182060
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; A[] = 0; Do[A[x] = 1/((1 + x) (1 - 3 x A[x]^2)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = (-1)^n + 3 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 19}]
    Table[Sum[(-1)^(n - k) Binomial[n + k, n - k] 3^k Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 19}]
    a[n_] := (-1)^n*HypergeometricPFQ[{1/3, 2/3, -n, n + 1}, {1/2, 1, 3/2}, (3/2)^4]; Table[a[n], {n, 0, 19}] (* Peter Luschny, Nov 12 2021 *)

Formula

a(n) = (-1)^n + 3 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+k,n-k) * 3^k * binomial(3*k,k) / (2*k+1).
a(n) = (-1)^n*hypergeom([1/3, 2/3, -n, n + 1], [1/2, 1, 3/2], (3/2)^4). - Peter Luschny, Nov 12 2021
a(n) ~ sqrt(585 + 73*sqrt(65)) * (73 + 9*sqrt(65))^n / (3^(5/2) * sqrt(Pi) * n^(3/2) * 2^(3*n + 5/2)). - Vaclav Kotesovec, Nov 13 2021

A235348 Series reversion of x*(1-2*x-5*x^2)/(1-x^2).

Original entry on oeis.org

1, 2, 12, 82, 636, 5266, 45684, 409706, 3768132, 35346082, 336854844, 3252391170, 31746462732, 312755404818, 3105750620772, 31054695744570, 312404601250644, 3159598296022978, 32108181705850860, 327682918265502002, 3357089384702757276
Offset: 1

Views

Author

Fung Lam, Jan 13 2014

Keywords

Comments

Sum of turbulence series A107841 and A235347.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-5*x^2)/(1-x^2), {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Jan 29 2014 *)
  • PARI
    Vec( serreverse(x*(1-2*x-5*x^2)/(1-x^2) +O(x^66) ) ) \\ Joerg Arndt, Jan 14 2014
  • Python
    # R. J. Mathar, 2023-03-28
    class A235348() :
        def _init_(self) :
            self.a = [1, 2, 12, 82, 636, 5266]
        def at(self, n):
            if n <= len(self.a):
                return self.a[n-1]
            else:
                rhs = -3*(n-1)*(160*n-237)*self.at(n-1) \
                +3*(-422*n**2+1721*n-1713)*self.at(n-2) \
                +2*(-67*n**2+388*n-552)*self.at(n-3) \
                +(137*n**2-1352*n+3279)*self.at(n-4) \
                +(7*n-37)*(n-6)*self.at(n-5) -(n-6)*(n-7)*self.at(n-6)
                rhs //= (-54*n*(n-1))
                self.a.append(rhs)
                return self.a[-1]
    a235348 = A235348()
    for n in range(1,12):
        print(a235348.at(n))
    # a235348.
    

Formula

D-finite with recurrence 54*n*(n-1)*a(n) -3*(n-1)*(160*n-237)*a(n-1) +3*(-422*n^2+1721*n-1713)*a(n-2) +2*(-67*n^2+388*n-552)*a(n-3) +(137*n^2-1352*n+3279)*a(n-4) +(7*n-37)*(n-6)*a(n-5) -(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Mar 24 2023

A235351 Series reversion of x*(1-3*x-2*x^2)/(1-x).

Original entry on oeis.org

0, 1, 2, 12, 84, 660, 5548, 48836, 444412, 4147220, 39471436, 381671204, 3738957148, 37028943860, 370123733932, 3729092573060, 37831802166076, 386135110256852, 3962278590508812, 40852572573083364, 423006921400424988, 4396894566694687924
Offset: 0

Views

Author

Fung Lam, Jan 16 2014

Keywords

Comments

Derived turbulence series: combined series reversion of A107841 and A235349.

Crossrefs

Programs

  • PARI
    my(x='x+O('x^25)); concat([0],Vec(serreverse(x*(1-3*x-2*x^2)/(1-x)))) \\ Joerg Arndt, Sep 01 2024
  • Python
    a = [0, 1]
    for n in range(20):
        m = len(a)
        d = 0
        for i in range (1, m):
            for j in range (1, m):
                if (i+j)%m ==0 and (i+j) <= m:
                    d = d + a[i]*a[j]
        g = 0
        for i in range (1, m):
            for j in range (1, m):
                for k in range (1, m):
                    if (i+j+k)%m ==0 and (i+j+k) <= m:
                        g = g + a[i]*a[j]*a[k]
        y = 2*g + 3*d - a[m-1]
        a.append(y)
    print(a)
    

Formula

G.f.: (exp(4*Pi*i/3)*u + exp(2*Pi*i/3)*v - 1/2)/x, where i=sqrt(-1),
u = 1/6*(-54-81*x+3*sqrt(-51+522*x+549*x^2-24*x^3))^(1/3), and
v = 1/6*(-54-81*x-3*sqrt(-51+522*x+549*x^2-24*x^3))^(1/3).
D-finite with recurrence 17*n*(n+1)*(11*n-17)*a(n) -n*(1914*n^2-3915*n+1513)*a(n-1) +(-2013*n^3+7137*n^2-7924*n+2640)*a(n-2) +4*(2*n-5)*(11*n-6)*(n-2)*a(n-3)=0. - R. J. Mathar, Jun 14 2016

Extensions

a(0) = 0 prepended by Andrey Zabolotskiy, Aug 31 2024

A364825 G.f. satisfies A(x) = 1 - x*A(x)^3 * (1 - 3*A(x)).

Original entry on oeis.org

1, 2, 18, 222, 3166, 49098, 804138, 13686198, 239671590, 4290463698, 78160665666, 1444298971662, 27005948771886, 510024567278234, 9714561608833242, 186403770207998310, 3599812021110287862, 69914211761486437026, 1364692279095996581490
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2023

Keywords

Crossrefs

Programs

  • Maple
    A364825 := proc(n)
        (-1)^n*add( (-3)^k*binomial(n,k) * binomial(3*n+k+1,n)/(3*n+k+1),k=0..n) ;
    end proc:
    seq(A364825(n),n=0..80); # R. J. Mathar, Aug 10 2023
  • PARI
    a(n) = (-1)^n*sum(k=0, n, (-3)^k*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1));

Formula

a(n) = (-1)^n * Sum_{k=0..n} (-3)^k * binomial(n,k) * binomial(3*n+k+1,n) / (3*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} 2^(n-k) * binomial(n,k) * binomial(4*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 2^k * 3^(n-k) * binomial(n,k) * binomial(3*n,k-1) for n > 0.
D-finite with recurrence +2079*n*(3*n-1)*(3*n+1)*a(n) +(-347173*n^3 +395007*n^2 -41030*n -43092)*a(n-1) +18*(-59207*n^3 +325826*n^2 -590255*n +352406)*a(n-2) +3*(-3299*n^3 +35998*n^2 -125399*n +141144)*a(n-3) +9*(3*n-10)*(3*n-11) *(n-4)*a(n-4)=0. - R. J. Mathar, Aug 10 2023

A364826 G.f. satisfies A(x) = 1 - x*A(x)^4 * (1 - 3*A(x)).

Original entry on oeis.org

1, 2, 22, 338, 6038, 117570, 2420758, 51833106, 1142472150, 25749801986, 590737764118, 13748997055826, 323842714201622, 7704914865207362, 184899022770465558, 4470200057557410834, 108776308617293352534, 2662072268791363675650
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^n*sum(k=0, n, (-3)^k*binomial(n, k)*binomial(4*n+k+1, n)/(4*n+k+1));

Formula

a(n) = (-1)^n * Sum_{k=0..n} (-3)^k * binomial(n,k) * binomial(4*n+k+1,n) / (4*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} 2^(n-k) * binomial(n,k) * binomial(5*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 2^k * 3^(n-k) * binomial(n,k) * binomial(4*n,k-1) for n > 0.

A364827 G.f. satisfies A(x) = 1 - x*A(x)^5 * (1 - 3*A(x)).

Original entry on oeis.org

1, 2, 26, 478, 10254, 240122, 5950530, 153417542, 4072868742, 110585691634, 3056671795946, 85722961493742, 2433127206219582, 69763483031049066, 2017643094336224914, 58789801741123032918, 1724199860717303739062, 50858327392484088101346
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^n*sum(k=0, n, (-3)^k*binomial(n, k)*binomial(5*n+k+1, n)/(5*n+k+1));

Formula

a(n) = (-1)^n * Sum_{k=0..n} (-3)^k * binomial(n,k) * binomial(5*n+k+1,n) / (5*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} 2^(n-k) * binomial(n,k) * binomial(6*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 2^k * 3^(n-k) * binomial(n,k) * binomial(5*n,k-1) for n > 0.

A235350 Series reversion of x*(1-2*x-x^2)/(1-x^2).

Original entry on oeis.org

1, 2, 8, 42, 248, 1570, 10416, 71474, 503088, 3612226, 26353720, 194806458, 1455874792, 10982013250, 83504148192, 639360351074, 4925190101600, 38144591091970, 296837838901992, 2319880586624714, 18200693844341720, 143294043656426082, 1131747417739664528
Offset: 1

Views

Author

Fung Lam, Jan 16 2014

Keywords

Comments

Derived series from A107841. The reversion has a quadratic power in x in the denominator. The general form reads x*(1-p*x-q*x^2)/(1-q*x^2).

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*(1-2*x-x^2)/(1-x^2), {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Jan 29 2014 *)
  • PARI
    Vec(serreverse(x*(1-2*x-x^2)/(1-x^2)+O(x^66))) \\ Joerg Arndt, Jan 17 2014
  • Python
    a = [0, 1]
    for n in range(20):
        m = len(a)
        d = 0
        for i in range (1, m):
            for j in range (1, m):
                if (i+j)%(m-1) == 0 and (i+j) < m:
                    d += a[i]*a[j]
        f = 0
        for i in range (1, m):
            for j in range (1, m):
                if (i+j)%m == 0 and (i+j) <= m:
                    f += a[i]*a[j]
        g = 0
        for i in range (1, m):
            for j in range (1, m):
                for k in range (1, m):
                    if (i+j+k)%m == 0 and (i+j+k) <= m:
                        g += a[i]*a[j]*a[k]
        y = g + 2*f - d
        a.append(y)
    print(a[1:]) # Edited by Andrey Zabolotskiy, Sep 04 2024
    

Formula

G.f.: (exp(4*Pi*i/3)*u + exp(2*Pi*i/3)*v - 2/3)/x, where i=sqrt(-1),
u = 1/3*(-17+3*x-6*x^2+x^3+3*sqrt(-6+54*x-30*x^2+18*x^3-3*x^4))^(1/3), and
v = 1/3*(-17+3*x-6*x^2+x^3-3*sqrt(-6+54*x-30*x^2+18*x^3-3*x^4))^(1/3).
D-finite with recurrence 6*n*(n-1)*a(n) -(n-1)*(52*n-75)*a(n-1) +(2*n+3)*(5*n-11)*a(n-2) +2*(5*n^2-62*n+150)*a(n-3) +(-13*n^2+130*n-321)*a(n-4) +(7*n-37)*(n-6)*a(n-5) -(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Mar 24 2023

A371380 Expansion of (1/x) * Series_Reversion( x * (1-3*x)^2 / (1-x) ).

Original entry on oeis.org

1, 5, 46, 521, 6574, 88658, 1250920, 18236849, 272544886, 4153080950, 64284022516, 1007929418570, 15974993572732, 255522850658564, 4119461259700060, 66869059171095809, 1091990982773631910, 17927521032225339854, 295717190725184361364, 4898634803627227516238
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-3*x)^2/(1-x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(2*n+k+1,k) * binomial(2*n,n-k).

A371385 Expansion of (1/x) * Series_Reversion( x * (1-3*x)^3 / (1-x) ).

Original entry on oeis.org

1, 8, 109, 1808, 33283, 653696, 13419460, 284479136, 6179728951, 136842057800, 3077436307141, 70095952722752, 1613743723323028, 37490308916974496, 877802418598193488, 20693109628871653184, 490732756789852308223, 11699199238845493854872
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-3*x)^3/(1-x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(3*n+k+2, k)*binomial(3*n+1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(3*n+k+2,k) * binomial(3*n+1,n-k).
Previous Showing 11-20 of 22 results. Next