cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 158 results. Next

A329617 Product of distinct exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 6, 1, 5, 2, 2, 2, 8, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 6, 2, 3, 1, 12, 2, 4, 2, 2, 1, 8, 1, 2, 3, 6, 2, 6, 1, 3, 2, 6, 1, 10, 1, 2, 6, 3, 2, 6, 1, 5, 4, 2, 1, 8, 2, 2, 2, 4, 1, 12, 2, 3, 2, 2, 2, 6, 1, 6, 3, 8, 1, 6, 1, 4, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Crossrefs

Differs from related A329378 for the first time at n=36. See also A329382.

Programs

Formula

a(n) = A290107(A108951(n)) = A290107(A329600(n)).
A329378(n) <= a(n) <= A329382(n) <= A329605(n).

A329618 a(n) = gcd(A001222(n), A324888(n)), where A324888(n) is the minimal number of primorials (A002110) that add to A108951(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 2, 2, 1, 4, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 4, 1, 2, 2, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 3, 2, 1, 1, 4, 2, 4, 2, 2, 1, 2, 1, 2, 3, 2, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 1, 2, 2, 2, 2, 1, 1, 3, 4, 1, 3, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{b = Reverse@ Prime@ Range@ 120}, Array[GCD[PrimeOmega@ #1, Total@ IntegerDigits[#2, MixedRadix[b]]] & @@ {#, Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]]} &, 105] ] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324886(n) = A276086(A108951(n));
    A329618(n) = gcd(bigomega(n), bigomega(A324886(n)));

Formula

a(n) = gcd(A001222(n), A324888(n)) = gcd(A001222(n), A001222(A324886(n))).

A329647 Bitwise-XOR of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 3, 0, 2, 1, 2, 0, 3, 1, 4, 1, 1, 0, 3, 0, 2, 1, 5, 2, 3, 0, 2, 0, 0, 1, 5, 1, 2, 3, 6, 0, 3, 0, 4, 1, 1, 0, 3, 1, 2, 1, 4, 0, 3, 1, 2, 0, 7, 2, 5, 0, 3, 1, 7, 0, 2, 0, 6, 3, 0, 1, 3, 1, 2, 0, 7, 1, 3, 2, 2, 1, 1, 0, 5, 0, 2, 1, 6, 2, 3, 0, 4, 0, 6, 0, 3, 1, 2, 3, 7, 1, 1, 1, 4, 0, 0, 1, 5, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Comments

Positions of records are: 1, 2, 4, 6, 16, 24, 36, 54, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 65536, ..., conjectured also to be the positions of the first occurrence of each n.

Crossrefs

Programs

Formula

a(n) = A268387(A108951(n)).
a(n) <= A329616(n).

A330686 Primorial deflation of (nonzero) K-champion numbers: a(n) is the unique integer x such that A108951(x) = A307866(1+n).

Original entry on oeis.org

1, 4, 3, 8, 6, 12, 9, 24, 18, 48, 20, 36, 96, 40, 72, 30, 54, 80, 144, 60, 108, 160, 288, 120, 216, 320, 90, 576, 240, 432, 180, 480, 864, 360, 960, 720, 1920, 540, 252, 1440, 3840, 1080, 504, 2880, 1200, 2160, 1008, 5760, 2688, 2400, 4320, 2016, 11520, 3240, 4800, 1512, 8640, 4032, 23040, 1680, 6480, 9600, 3024, 17280, 8064, 7200
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Crossrefs

Formula

a(n) = A329900(A307866(1+n)).
a(n) = A122111(A353568(n)). - Antti Karttunen, May 20 2022

A330689 Primorial deflation of A330687 (record positions in A050377): a(n) is the unique integer x such that A108951(x) = A330687(n).

Original entry on oeis.org

1, 4, 16, 64, 36, 256, 144, 1024, 81, 576, 324, 2304, 1296, 5184, 2916, 20736, 11664, 82944, 14400, 46656, 331776, 57600, 32400, 1327104, 104976, 230400, 746496, 40000, 129600, 419904, 921600, 160000, 1679616, 3686400, 291600, 640000, 2073600, 6718464, 360000, 1166400, 2560000, 26873856, 1440000, 313600, 4665600, 10240000, 810000
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A329900(A330687(n)).

A331292 The next more significant digit after A329348(n) in the primorial base expansion of A108951(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 1, 0, 0, 5, 0, 0, 3, 6, 8, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 3, 0, 1, 0, 0, 0, 0, 5, 0, 2, 0, 0, 3, 0, 16, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 0, 10, 12, 0, 0, 0, 1, 6, 0, 12, 2, 6, 0, 0, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 17 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A007949(A246277(A324886(n))).
a(n) = A331293(n) modulo A000040(2+A061395(n)).

A331293 Let h = A061395(n) and u = A108951(n) - (A002110(h)*A329348(n)). Then a(n) = u/A002110(1+h).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 4, 0, 7, 0, 0, 1, 0, 5, 0, 0, 2, 4, 0, 0, 0, 1, 0, 1, 0, 0, 5, 0, 0, 3, 19, 8, 0, 0, 0, 14, 2, 0, 0, 0, 0, 3, 0, 0, 3, 10, 1, 0, 0, 0, 0, 5, 0, 9, 0, 0, 25, 0, 16, 0, 0, 2, 43, 0, 0, 2, 1, 0, 0, 0, 0, 10, 12, 0, 0, 0, 1, 6, 0, 38, 2, 17, 0, 0, 0, 0, 16
Offset: 1

Views

Author

Antti Karttunen, Jan 17 2020

Keywords

Crossrefs

Cf. A331294 (positions of records).

Programs

Formula

a(n) modulo A151800(A117366(n)) = A331292(n).

A344698 a(n) = A344696(A108951(n)).

Original entry on oeis.org

1, 1, 1, 7, 1, 7, 1, 5, 91, 7, 1, 5, 1, 7, 91, 31, 1, 65, 1, 5, 91, 7, 1, 31, 2821, 7, 25, 5, 1, 65, 1, 21, 91, 7, 2821, 403, 1, 7, 91, 31, 1, 65, 1, 5, 25, 7, 1, 21, 7657, 403, 91, 5, 1, 155, 2821, 31, 91, 7, 1, 403, 1, 7, 25, 127, 2821, 65, 1, 5, 91, 403, 1, 91, 1, 7, 155, 5, 7657, 65, 1, 21, 3751, 7, 1, 403, 2821
Offset: 1

Views

Author

Antti Karttunen, May 26 2021

Keywords

Comments

Records seem to occur on certain squares: 1, 4, 9, 25, 49, 100, 121, 289, 361, 529, 841, 961, etc. See A344701.

Crossrefs

Cf. A000203, A001615, A108951, A337203, A344696, A344699, A344701 (positions of records).

Programs

A344699 a(n) = A344697(A108951(n)).

Original entry on oeis.org

1, 1, 1, 6, 1, 6, 1, 4, 72, 6, 1, 4, 1, 6, 72, 24, 1, 48, 1, 4, 72, 6, 1, 24, 2160, 6, 18, 4, 1, 48, 1, 16, 72, 6, 2160, 288, 1, 6, 72, 24, 1, 48, 1, 4, 18, 6, 1, 16, 5760, 288, 72, 4, 1, 108, 2160, 24, 72, 6, 1, 288, 1, 6, 18, 96, 2160, 48, 1, 4, 72, 288, 1, 64, 1, 6, 108, 4, 5760, 48, 1, 16, 2592, 6, 1, 288, 2160
Offset: 1

Views

Author

Antti Karttunen, May 26 2021

Keywords

Crossrefs

Cf. A000203, A001615, A108951, A337203, A344697, A344698, A344701 (apparently positions of records).

Programs

A346092 a(n) = A276085(A328572(A108951(n))).

Original entry on oeis.org

0, 0, 0, 2, 0, 6, 0, 0, 0, 30, 0, 18, 0, 210, 150, 8, 0, 36, 0, 90, 1050, 2310, 0, 12, 660, 30030, 0, 630, 0, 120, 0, 0, 11550, 510510, 3780, 108, 0, 9699690, 150150, 0, 0, 0, 0, 6930, 840, 223092870, 0, 60, 11550, 1560, 2552550, 90090, 0, 216, 36960, 1470, 48498450, 6469693230, 0, 480, 0, 200560490130, 5040, 32, 360360
Offset: 1

Views

Author

Antti Karttunen, Jul 09 2021

Keywords

Crossrefs

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) };
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
    A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
    A346092(n) = A276085(A328572(A108951(n)));

Formula

a(n) = A108951(n) - A346093(n).
Previous Showing 31-40 of 158 results. Next