cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 158 results. Next

A373986 Numerator of A373158(n) / A108951(n), where A108951 is fully multiplicative and A373158 is fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 8, 1, 5, 1, 53, 1, 1, 1, 7, 1, 17, 6, 578, 1, 1, 1, 7508, 1, 107, 1, 19, 1, 5, 193, 127628, 4, 1, 1, 2424923, 2503, 3, 1, 109, 1, 1157, 7, 55773218, 1, 7, 1, 31, 14181, 15017, 1, 5, 13, 9, 269436, 1617423308, 1, 1, 1, 50140122533, 37, 3, 167, 1159, 1, 255257, 18591073, 121, 1, 1, 1, 1855184533703
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2024

Keywords

Crossrefs

Cf. A108951, A373158, A373985, A373987 (denominators), A373988 (rgs-transform).

Programs

  • PARI
    A373986(n) = { my(f=factor(n),m=1,s=0); for(i=1, #f~, my(x=prod(i=1,primepi(f[i, 1]),prime(i))); s += f[i, 2]*x; m *= x^f[i, 2]); s/gcd(m,s); };
    
  • PARI
    A373986(n) = numerator(A373158(n)/A108951(n));

Formula

a(n) = A373158(n) / A373985(n) = A373158(n) / gcd(A108951(n), A373158(n)).

A283478 a(n) = A097248(A108951(n)).

Original entry on oeis.org

1, 2, 6, 3, 30, 5, 210, 6, 15, 7, 2310, 10, 30030, 11, 21, 5, 510510, 30, 9699690, 14, 33, 13, 223092870, 15, 105, 17, 14, 22, 6469693230, 42, 200560490130, 10, 39, 19, 165, 7, 7420738134810, 23, 51, 21, 304250263527210, 66, 13082761331670030, 26, 70, 29, 614889782588491410, 30, 1155, 210, 57, 34, 32589158477190044730, 21, 195, 33, 69, 31
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FixedPoint[Times @@ Map[#1^#2 & @@ # &, Partition[#, 2, 2] &@ Flatten[FactorInteger[#] /. {p_, e_} /; e >= 2 :> {If[OddQ@ e, {p, 1}, {1, 1}], {NextPrime@ p, Floor[e/2]}}]] &, #] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]], {n, 58}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From Charles R Greathouse IV, Jun 28 2015
    A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i,1]+1)^(f[i,2]\2))*((f[i,1])^(f[i,2]%2))); };
    A097248(n) = { my(k=A097246(n)); while(k<>n, n = k; k = A097246(k)); k; };
    A283478(n) = A097248(A108951(n));
    
  • Python
    from sympy import primerange, factorint, nextprime
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a097246(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [(nextprime(i)**int(f[i]/2))*(i**(f[i]%2)) for i in f])
    def a097248(n):
        k=a097246(n)
        while k!=n:
            n=k
            k=a097246(k)
        return k
    def a(n): return a097248(a108951(n)) # Indranil Ghosh, May 15 2017
  • Scheme
    (define (A283478 n) (A097248 (A108951 n)))
    

Formula

a(n) = A097248(A108951(n)).
Other identities:
For all n >= 0, a(A019565(n)) = A283475(n).

A329602 Square root of largest square dividing A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 6, 2, 1, 2, 1, 2, 6, 4, 1, 6, 1, 2, 6, 2, 1, 4, 30, 2, 6, 2, 1, 6, 1, 4, 6, 2, 30, 12, 1, 2, 6, 4, 1, 6, 1, 2, 6, 2, 1, 4, 210, 30, 6, 2, 1, 12, 30, 4, 6, 2, 1, 12, 1, 2, 6, 8, 30, 6, 1, 2, 6, 30, 1, 12, 1, 2, 30, 2, 210, 6, 1, 4, 36, 2, 1, 12, 30, 2, 6, 4, 1, 12, 210, 2, 6, 2, 30, 8, 1, 210, 6, 60, 1, 6, 1, 4, 30
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000188(A108951(n)).

A329615 Bitwise-AND of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 1, 1, 0, 0, 4, 1, 2, 1, 1, 0, 0, 1, 0, 2, 0, 3, 1, 1, 0, 1, 5, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 6, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 4, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A267115(A108951(n)) = A267115(A329600(n)).
a(n) <= A329616(n).

A329616 Bitwise-OR of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 3, 4, 1, 3, 1, 3, 3, 3, 1, 5, 2, 3, 3, 3, 1, 3, 1, 5, 3, 3, 3, 6, 1, 3, 3, 5, 1, 3, 1, 3, 3, 3, 1, 5, 2, 3, 3, 3, 1, 7, 3, 5, 3, 3, 1, 7, 1, 3, 3, 6, 3, 3, 1, 3, 3, 3, 1, 7, 1, 3, 3, 3, 3, 3, 1, 5, 4, 3, 1, 7, 3, 3, 3, 5, 1, 7, 3, 3, 3, 3, 3, 7, 1, 3, 3, 6, 1, 3, 1, 5, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Comments

Positions of records are: 1, 2, 4, 6, 16, 24, 36, 54, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 65536, ..., conjectured also to be the positions of the first occurrence of each n.

Crossrefs

Programs

Formula

a(n) = A267116(A108951(n)) = A267116(A329600(n)).
a(n) >= A007814(n).
a(n) >= A329615(n).
a(n) >= A329647(n).

A329621 a(n) = gcd(A056239(n), A324888(n)) = gcd(A001222(A108951(n)), A001222(A324886(n))).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 6, 2, 1, 1, 6, 1, 2, 2, 1, 6, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 8, 1, 3, 4, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 9, 3, 1, 1, 8, 2, 1, 4, 2, 1, 6, 8, 1, 4, 2, 1, 1, 2, 1, 1, 1, 1, 3, 8, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{b = MixedRadix[Reverse@ Prime@ Range@ 500]}, Array[GCD @@ PrimeOmega@ {#, Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[#, b]} &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105]] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329621(n) = { my(u=A108951(n)); gcd(bigomega(u), bigomega(A276086(u))); };

Formula

a(n) = gcd(A056239(n), A324888(n)) = gcd(A001222(A108951(n)), A001222(A324886(n))).

A329622 a(n) = A056239(n) - A324888(n) = A001222(A108951(n)) - A001222(A324886(n)).

Original entry on oeis.org

-1, 0, 1, 0, 2, 1, 3, 1, 2, 2, 4, 0, 5, 3, -1, 0, 6, 1, 7, 1, 0, 4, 8, 1, 0, 5, 4, 2, 9, 0, 10, 3, 1, 6, -3, -2, 11, 7, 2, 4, 12, 5, 13, 3, 1, 8, 14, 2, 0, -5, 3, 4, 15, 3, 2, -1, 4, 9, 16, 1, 17, 10, 2, 2, -5, -4, 18, 5, 5, -2, 19, 1, 20, 11, -2, 6, -9, -3, 21, 3, 0, 12, 22, 4, -2, 13, 6, 0, 23, -4, -8, 7, 7, 14, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{b = MixedRadix[Reverse@ Prime@ Range@ 500]}, Array[Subtract @@ PrimeOmega@ {#, Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[#, b]} &@ Apply[Times, Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 95]] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329622(n) = { my(u=A108951(n)); (bigomega(u) - bigomega(A276086(u))); };

Formula

a(n) = A056239(n) - A324888(n) = A001222(A108951(n)) - A001222(A324886(n)).

A373987 Denominator of A373158(n) / A108951(n), where A108951 is fully multiplicative and A373158 is fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 4, 3, 15, 1, 12, 1, 105, 5, 2, 1, 36, 1, 60, 35, 1155, 1, 4, 15, 15015, 12, 420, 1, 180, 1, 16, 1155, 255255, 105, 9, 1, 4849845, 15015, 20, 1, 1260, 1, 4620, 180, 111546435, 1, 48, 105, 900, 85085, 60060, 1, 108, 385, 70, 1616615, 3234846615, 1, 18, 1, 100280245065, 1260, 16, 5005, 13860, 1, 1021020
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2024

Keywords

Crossrefs

Cf. A108951, A373158, A373985, A373986 (numerators).

Programs

  • PARI
    A373987(n) = { my(f=factor(n),m=1,s=0); for(i=1, #f~, my(x=prod(i=1,primepi(f[i, 1]),prime(i))); s += f[i, 2]*x; m *= x^f[i, 2]); m/gcd(m,s); };
    
  • PARI
    A373987(n) = denominator(A373158(n)/A108951(n));

Formula

a(n) = A108951(n) / A373985(n) = A108951(n) / gcd(A108951(n), A373158(n)).

A324887 a(n) = A108951(n) * A276086(A108951(n)).

Original entry on oeis.org

2, 6, 30, 36, 210, 300, 2310, 120, 1260, 2940, 30030, 15000, 510510, 50820, 21176820, 3600, 9699690, 88200, 223092870, 288120, 2232166860, 780780, 6469693230, 42000, 645668100, 17357340, 11880, 12298440, 200560490130, 66555720, 7420738134810, 672, 66899572740, 368588220, 228227900600700, 216090000, 304250263527210
Offset: 1

Views

Author

Antti Karttunen, Mar 30 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A324580(A108951(n)) = A108951(n) * A324886(n).

A329612 a(n) = gcd(d(n), d(A108951(n))), where d(n) gives the number of divisors of n, A000005(n), and A108951 is fully multiplicative with a(prime(i)) = prime(i)# = prime(1) * ... * prime(i).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 4, 3, 4, 2, 2, 2, 4, 2, 5, 2, 6, 2, 2, 4, 4, 2, 2, 3, 4, 4, 2, 2, 8, 2, 6, 4, 4, 2, 3, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 2, 3, 6, 4, 2, 2, 4, 4, 8, 4, 4, 2, 6, 2, 4, 2, 7, 4, 8, 2, 2, 4, 8, 2, 6, 2, 4, 6, 2, 2, 8, 2, 2, 5, 4, 2, 12, 4, 4, 4, 8, 2, 4, 4, 2, 4, 4, 4, 2, 2, 6, 2, 9, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A000005(n),A329605(n)) = gcd(A000005(n),A000005(A108951(n))).
Previous Showing 41-50 of 158 results. Next