cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A074844 Largest difference between consecutive divisors of n is equal to the sum of divisors of n except 1 and n.

Original entry on oeis.org

4, 345, 6489, 88473
Offset: 1

Views

Author

Jason Earls, Sep 10 2002

Keywords

Comments

No other term < 600000. - Emeric Deutsch, Aug 04 2005
No more terms < 10^9. - Lars Blomberg, Jun 04 2013
If p = 5^k - 2 is a prime > 3, then 3*p*(p+2)/5 is in this sequence (see A109080). - Charlie Neder, Oct 13 2018
a(5) > 10^13. - Giovanni Resta, Feb 15 2020

Examples

			The divisors of 345 are [1, 3, 5, 15, 23, 69, 115, 345] and the largest difference between consecutive divisors is 345-115 = 230; the sum of divisors except 1 and 345 are 3+5+15+23+69+115 = 230.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local div: div:=divisors(n): if max(seq(div[j]-div[j-1],j=2..tau(n)))=sigma(n)-1-n then n else fi end: seq(a(n),n=1..100000); # Emeric Deutsch, Aug 04 2005

Extensions

More terms from Emeric Deutsch, Aug 04 2005

A133856 Least number k > (2n-1) such that (2n-1)^k - 2 is prime, or 0 if no such number exists.

Original entry on oeis.org

0, 4, 14, 8, 11, 22420, 78, 17, 24, 20, 25, 24, 63, 30, 42, 69, 128, 50, 119, 204, 2816, 76, 52, 288, 64, 66, 184, 153, 67, 268, 78, 210, 438, 295, 96, 74, 136, 128, 2900, 1898, 130, 92, 381, 106, 18626, 97, 98, 1650, 747, 109, 214, 113, 312, 354, 1702, 560, 2798, 123, 171, 554, 11210, 834, 208, 990, 9271
Offset: 1

Views

Author

Alexander Adamchuk, Oct 01 2007

Keywords

Comments

a(66) > 40000. - Robert Price, Mar 02 2015

Crossrefs

Cf. A128472 (smallest prime of the form (2n-1)^k - 2 for k > (2n-1), or 0 if no such number exists).
Cf. A084714 (smallest prime of the form (2n-1)^k - 2, or 0 if no such number exists).

Formula

A128472(n) = (2n-1)^a(n) - 2 for n > 1.

Extensions

a(6) = 22420 was found by Rick L. Shepherd, Sep 29 2009
a(21)-a(44) from Max Alekseyev, Oct 04 2007
a(45)-a(65) from Robert Price, Mar 02 2015

A155897 Square matrix T(m,n)=1 if (2m+1)^n-2 is prime, 0 otherwise; read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2009

Keywords

Comments

In some sense a "minimal" possible generalization of the pattern of Mersenne primes (cf. A000043) is to consider powers of odd numbers (> 1) minus 2. Since even powers obviously correspond to an odd power of the base squared, it is sufficient to consider only odd powers, cf. A155899.

Crossrefs

Programs

  • PARI
    T = matrix( 19,19,m,n, isprime((2*m+1)^n-2)) ;
    A155897 = concat( vector( vecmin( matsize(T)), i, vector( i, j, T[j,i-j+1])))

A155898 Square matrix T(m,n)=1 if (2m+1)^(2n)-2 is prime, 0 otherwise; read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2009

Keywords

Comments

In some sense the "minimal" possible generalization of the pattern of Mersenne primes (cf. A000043) is to consider powers of odd numbers minus 2. Here only even powers are considered (which obviously correspond to an odd power of the base squared).

Crossrefs

Programs

  • PARI
    T = matrix( 19,19,m,n, isprime((2*m+1)^(2*n)-2)) ;
    A155898 = concat( vector( vecmin( matsize(T)), i, vector( i, j, T[j,i-j+1])))

A204578 Primes of the form 5^k-2.

Original entry on oeis.org

3, 23, 6103515623, 1490116119384765623, 88817841970012523233890533447265623, 11754943508222875079687365372222456778186655567720875215087517062784172594547271728515623, 44841550858394146269559346665277316200968382140048504696226185084473314645947539247572422027587890623
Offset: 1

Views

Author

M. F. Hasler, Jan 30 2012

Keywords

Comments

See the sequence A109080 for the corresponding exponents k.
The number a(3) = 6103515623 is also in A095304, A104090 and A128472.

Crossrefs

Cf. A109080.

Programs

  • PARI
    for(i=0,999, ispseudoprime(t=5^i-2) & print1(t","))

Formula

a(n) = 5^A109080(n)-2.

A217134 Numbers n such that 5^n - 8 is prime.

Original entry on oeis.org

2, 4, 10, 14, 88, 112, 140, 764, 3040, 11096, 24934, 25616, 54584, 93400
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(15) > 10^5. - Robert Price, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 5000], PrimeQ[5^# - 8] &]
  • PARI
    for(n=2, 5*10^3, if(isprime(5^n-8), print1(n", ")))

Extensions

a(10)-a(14) from Robert Price, Feb 03 2014

A248546 Numbers k such that 75^k - 2 is prime.

Original entry on oeis.org

1, 2, 25, 32, 62, 128, 848, 2091, 2882, 11761, 25915
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 08 2014

Keywords

Comments

Dedicated to N. J. A. Sloane for his 75th birthday!

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(75^n-2)]; // Vincenzo Librandi, Oct 08 2014
    
  • Mathematica
    Select[Range[1000],PrimeQ[75^#-2]&]
  • PARI
    is(n)=ispseudoprime(75^n-2) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(10) from Michael S. Branicky, Apr 02 2023
a(11) from Michael S. Branicky, Oct 10 2024

A258043 Smallest k such that prime(k)^n - 2 is prime.

Original entry on oeis.org

3, 1, 8, 2, 2, 2, 4, 4, 2, 16, 193, 4, 8, 3, 4, 21, 11, 18, 8, 8, 11, 2, 8, 7, 70, 3, 95, 4, 172, 7, 4, 94, 143, 90, 193, 17, 2, 8, 46, 41, 2, 10, 254, 90, 74, 75, 371, 85, 70, 3, 177, 53, 85, 91, 18, 24, 84, 103, 34, 95, 34, 111, 80, 253, 84, 224, 397, 1002, 11, 33, 773, 29, 647, 20
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 22 2015

Keywords

Comments

Primes of the form prime(n)^n - 2: 3, 7, 61, 67, 71, 73, 127, ...

Examples

			a(1) = 3 because prime(3)^1 - 2 = 3 and 3 is prime,
a(2) = 1 because prime(1)^2 - 2 = 2 and 2 is prime,
a(3) = 8 because prime(8)^3 - 2 = 6857 and 6857 is prime.
		

Crossrefs

Programs

  • PARI
    a(n) = my(k = 1); while(! isprime(prime(k)^n-2), k++); k; \\ Michel Marcus, May 23 2015

A359695 Numbers k such that 29^k - 2 is prime.

Original entry on oeis.org

2, 4, 8, 14, 42, 420, 1344
Offset: 1

Views

Author

Arsen Vardanyan, Mar 07 2023

Keywords

Comments

a(8) > 10^4, if it exists. - Amiram Eldar, Mar 10 2023
All terms in this sequence are even. - Yifan Xie, Mar 12 2023
a(8) > 5*10^4, if it exists. - Michael S. Branicky, Sep 14 2024

Examples

			4 is a term because 29^4 - 2 = 707279 is a prime number.
		

Crossrefs

Cf. A087886 (29^k + 2 is prime).
Cf. A128460, A128459, A128457, A109076, A090669, A105772, A109080, (and similar others).

Programs

  • Mathematica
    Select[Range[1400], PrimeQ[29^# - 2] &] (* Amiram Eldar, Mar 10 2023 *)
  • PARI
    is(k) = isprime(29^k - 2);

A378868 Numbers k such that 5^k - 22 is prime.

Original entry on oeis.org

2, 3, 31, 79, 491, 3019, 3623, 4175, 9957, 21963, 71637, 80551, 80831
Offset: 1

Views

Author

Robert Price, Dec 09 2024

Keywords

Comments

a(14) > 10^5. - Michael S. Branicky, Dec 24 2024

Examples

			3 is a term because 5^3 - 22 = 103 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k-22)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#-22]&]

Extensions

a(8)-a(10) from Michael S. Branicky, Dec 17 2024
a(11)-a(13) from Michael S. Branicky, Dec 22 2024
Previous Showing 11-20 of 20 results.