cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A241584 Number of orbits of Sym(n)^2 under action of Iso_1(n).

Original entry on oeis.org

1, 4, 11, 43, 155, 761, 4043, 27190
Offset: 1

Views

Author

N. J. A. Sloane, May 12 2014

Keywords

Crossrefs

Formula

Proposition 3.2 of Bogaerts et al. gives an explicit formula.

A241585 Number of orbits of Sym(n)^2 under action of Iso_1*(n).

Original entry on oeis.org

1, 3, 8, 28, 93, 425, 2151, 14016
Offset: 1

Views

Author

N. J. A. Sloane, May 12 2014

Keywords

Crossrefs

Formula

Proposition 3.3 of Bogaerts et al. gives an explicit formula.

A309682 G.f.: C(x)*C(2*x^2)*C(3*x^3)*..., where C(x) is the g.f. for A000108.

Original entry on oeis.org

1, 1, 4, 10, 33, 81, 282, 762, 2599, 7979, 27343, 89371, 315256, 1078498, 3857048, 13651786, 49475282, 178736186, 655247192, 2401663838, 8883371016, 32906649488, 122619768860, 457836275272, 1716620421629, 6449729802639, 24308647131627, 91800114425437
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 12 2019

Keywords

Crossrefs

Programs

  • Maple
    C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          C(n), add(C(j)*i^j*b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[Sum[CatalanNumber[k]*j^k*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*k*x^k])/(2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n / n^(3/2), where c = 1/(2*sqrt(Pi)) * Product_{k>=1} (2^k*(2^(k-1) - sqrt(4^(k-1) - k))/k) = 0.711438694828613555153724789...

A327150 Number of orbits of the direct square of the alternating group A_n^2 where A_n acts by conjugation.

Original entry on oeis.org

1, 1, 1, 9, 22, 77, 400, 2624, 20747, 183544, 1826374, 20045348, 240262047, 3120641718, 43665293393, 654731266933, 10472819759734, 178001257647196, 3203520381407270, 60859480965537820, 1217072840308660049
Offset: 0

Views

Author

Derek Lim, Aug 23 2019

Keywords

Examples

			For n = 3, representatives of the n=9 orbits are (e,e), (e,(123)), (e,(132)), ((123),e), ((132),e), ((123),(123)), ((123),(132)), ((132),(123)), ((132),(132)), where e is the identity.
		

Crossrefs

Programs

  • GAP
    G:= AlternatingGroup(n);; Size(G)*Sum(List(ConjugacyClasses(G), K -> 1/Size(K)));

Formula

a(n) = (n!/2) * Sum_{K conjugacy class in A_n} 1/|K|.

A271707 Triangle read by rows, T(n,k) = Sum_{p in P(n,k)} Aut(p) where P(n,k) are the partitions of n with length k and Aut(p) = 1^j[1]*j[1]!*...*n^j[n]*j[n]! where j[m] is the number of parts in the partition p equal to m; for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 2, 6, 0, 4, 11, 4, 24, 0, 5, 10, 14, 12, 120, 0, 6, 31, 62, 34, 48, 720, 0, 7, 28, 60, 84, 120, 240, 5040, 0, 8, 66, 102, 490, 228, 552, 1440, 40320, 0, 9, 60, 299, 292, 708, 912, 3120, 10080, 362880, 0, 10, 120, 282, 722, 4396, 2136, 4752, 20880, 80640, 3628800
Offset: 0

Views

Author

Peter Luschny, Apr 17 2016

Keywords

Comments

S(n,k) = Sum_{p in P(n,k)} n!/Aut(p) are the Stirling cycle numbers A132393.

Examples

			Triangle starts:
[1]
[0, 1]
[0, 2, 2]
[0, 3, 2, 6]
[0, 4, 11, 4, 24]
[0, 5, 10, 14, 12, 120]
[0, 6, 31, 62, 34, 48, 720]
[0, 7, 28, 60, 84, 120, 240, 5040]
		

Crossrefs

Cf. A110143 (row sums), A132393, A271708.

Programs

  • Sage
    def A271707(n,k):
        P = Partitions(n, length=k)
        return sum(p.aut() for p in P)
    for n in (0..10): print([A271707(n,k) for k in (0..n)])

A327015 Number of equivalence classes of pairs of permutations in S_n where two pairs are equivalent if they are simultaneously conjugate to each other or simultaneously conjugate to each other after a reversal of one pair.

Original entry on oeis.org

1, 1, 3, 8, 28, 98, 518, 3096, 23415, 201795, 1973189, 21347935, 253282652, 3263902430
Offset: 0

Views

Author

Derek Lim, Aug 13 2019

Keywords

Examples

			For n = 2, representatives of the a(2) = 3 classes are: (e,e), (e, (12)), ((12),(12)), where e is identity.
		

Crossrefs

Formula

a(n) = (A110143(n) + A327014(n)) / 2.

A327151 Number of orbits of the direct square of the alternating group A_n^2 where A_n acts by conjugation, such that both permutations in a representative pair are of the same conjugacy class in A_n.

Original entry on oeis.org

1, 1, 1, 3, 8, 23, 82, 452, 2369, 18356, 143308, 1396222, 13000455, 152886068
Offset: 0

Views

Author

Derek Lim, Aug 23 2019

Keywords

Examples

			For n = 3, representatives of the a(3) = 3 orbits are: (e,e), ((123),(123)), ((132),(132)), where e is the identity.
		

Crossrefs

A338001 Irregular triangle read by rows, a refinement of A271708.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 6, 2, 3, 0, 24, 8, 4, 3, 4, 0, 120, 8, 12, 6, 6, 4, 5, 0, 720, 48, 16, 48, 18, 6, 18, 8, 8, 5, 6, 0, 5040, 48, 48, 240, 18, 24, 12, 72, 12, 8, 24, 10, 10, 6, 7, 0, 40320, 384, 96, 192, 1440, 36, 36, 24, 36, 360, 32, 12, 32, 16, 96, 15, 10, 30, 12, 12, 7, 8
Offset: 0

Views

Author

Peter Luschny, Nov 13 2020

Keywords

Comments

Row n of the triangle gives the sizes of the centralizers of any permutation of cycle type given by the partitions of n with max. part k.
T(n, k) divides n! if k > 0 and in this case the n!/T(n, k) give, up to order, the rows of A036039.

Examples

			Triangle rows start:
0: [1];
1: [0], [1];
2: [0], [2],    [2];
3: [0], [6],    [2],           [3];
4: [0], [24],   [8, 4],        [3],              [4];
5: [0], [120],  [8, 12],       [6, 6],           [4],         [5];
6: [0], [720],  [48, 16, 48],  [18, 6, 18],      [8, 8],      [5],      [6];
7: [0], [5040], [48, 48, 240], [18, 24, 12, 72], [12, 8, 24], [10, 10], [6], [7];
.
For n = 4 the partition of 4 with cycle type [2, 2] has centralizer size 8, and the partition [2, 1, 1] has centralizer size 4. Therefore in column 2 in the above triangle the pair [8, 4] appears.
		

Crossrefs

Cf. A271708, A110143 (row sums), A052810 (row length), A126074, A036039.

Programs

  • SageMath
    def A338001(n):
        R = []
        for k in (0..n):
            P = Partitions(n, max_part=k, inner=[k])
            q = [p.aut() for p in P]
            R.append(q if q != [] else [0])
        return flatten(R)
    for n in (0..7): print(A338001(n))
Previous Showing 11-18 of 18 results.