A288968
Exponents a(1), a(2), ... such that E_2, 1 - 24*q - 72*q^2 - ... (A006352) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
24, 348, 6424, 129300, 2778648, 62114524, 1428337176, 33527349924, 799482197272, 19302454317660, 470740035601176, 11575875047000596, 286650683468840472, 7140515309818664028, 178783562850377621272, 4496350112540599930692
Offset: 1
A289029
Exponents a(1), a(2), ... such that E_14, 1 - 24*q - 196632*q^2 + ... (A058550) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
24, 196908, 42987544, 21974456220, 8544538312728, 3980088408377644, 1793770730037338136, 847156322106368439324, 401870774532436947447832, 193962999708079363021283628, 94363580764388112933729226776, 46332621615483591171320408201116
Offset: 1
A289024
Exponents a(1), a(2), ... such that E_10, 1 - 264*q - 135432*q^2 + ... (A013974) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
264, 170148, 47083784, 21265517460, 8675419078920, 3954919534878884, 1798749087973466376, 846151096977050604564, 402076970410851910136072, 193920175271783317402925220, 94372564731126150526919627016, 46330721199213296384252696382356
Offset: 1
A289308
Coefficients in expansion of E_4^(3/8).
Original entry on oeis.org
1, 90, -5940, 758520, -115431930, 19355028840, -3447208777320, 639751846440960, -122326632902618100, 23925871041887048130, -4763590542726586318440, 962102309316632909723880, -196619722885250960565506040, 40580696990507644723354537320
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(3/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289309
Coefficients in expansion of E_4^(5/8).
Original entry on oeis.org
1, 150, -5400, 625200, -86672550, 13570016400, -2289741037200, 406440122001600, -74830416797043000, 14162747887897808550, -2738995393669565720400, 538973037306449327998800, -107578899914865970323788400, 21729813219122500082762389200
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(5/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289319
Coefficients in expansion of E_4^(7/8).
Original entry on oeis.org
1, 210, -1260, 232680, -28907970, 4211355960, -671557897080, 113817372354240, -20151698294479500, 3687092782592216970, -692109989731133096760, 132609267059636375116920, -25838624519733523814390760, 5105657091664960508653858680
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(7/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A288471
Exponents a(1), a(2), ... such that E_8, 1 + 480*q + 61920*q^2 + ... (A008410) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
-480, 53520, -8192480, 1417877520, -261761532384, 50337746997520, -9956715872256480, 2010450258635669520, -412391756829925376480, 85648872592091236716816, -17967933476075186380800480, 3800832540589574135423637520
Offset: 1
A289318
Coefficients in expansion of E_4^(3/4).
Original entry on oeis.org
1, 180, -3780, 447840, -59046660, 8921092680, -1463828444640, 253953515257920, -45858209756343300, 8534765953624978260, -1626301691950399586280, 315807346469727624396960, -62284193156782292089690080, 12443904711281870749228431240
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(3/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
A289636
Coefficients in expansion of -q*E'_4/E_4 where E_4 is the Eisenstein Series (A004009).
Original entry on oeis.org
-240, 53280, -12288960, 2835808320, -654403831200, 151013228757120, -34848505552897920, 8041801037378486400, -1855762905734676483120, 428244362959801779806400, -98823634118413525094402880, 22804995243537595828606337280
Offset: 1
a(1) = 1 * A110163(1) = -240,
a(2) = 1 * A110163(1) + 2 * A110163(2) = 53280,
a(3) = 1 * A110163(1) + 3 * A110163(3) = -12288960.
-
nmax = 20; Rest[CoefficientList[Series[-240*x*Sum[k*DivisorSigma[3, k]*x^(k-1), {k, 1, nmax}]/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[-D[Ei[4], x]/Ei[4] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
A289566
Coefficients in expansion of 1/E_4^(1/2).
Original entry on oeis.org
1, -120, 20520, -3934560, 793510440, -164694615120, 34824089129760, -7460017581785280, 1613575314347164200, -351613291994820018840, 77073167391611232305520, -16975579813113940564868640, 3753822590560913900129106720
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
Comments