cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A112814 Numbers k such that lcm(1,2,3,...,k)/5 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

105, 106, 107, 108, 109, 2625, 2626, 2627, 2628, 2629, 2630, 2631, 2632, 2633, 2634, 2635, 2636, 2637, 2638, 2639, 2640, 2641, 2642, 2643, 2644, 2645, 2646, 2647, 2648, 2649, 2650, 2651, 2652, 2653, 2654, 2655, 2656, 2657, 2658, 2659, 2660, 2661, 2662
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

When 5 occurs in A110566.

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[2662], f[ # ] == 5 &]
  • PARI
    isok(n) = lcm(vector(n, i, i)) == 5*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018

A112815 Numbers k such that lcm(1,2,3,...,k)/7 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

44, 45, 46, 47, 48, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 2209, 2210, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

When 7 occurs in A110566.

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[2219], f[ # ] == 7 &]
  • PARI
    isok(n) = lcm(vector(n, i, i)) == 7*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018

A112816 Numbers k such that lcm(1,2,3,...,k)/9 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

63, 64, 65, 69, 70, 71, 189, 190, 191, 192, 193, 194, 195, 196, 197, 207, 208, 209, 210, 211, 212, 213, 214, 215, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713, 1714, 1715, 1716, 1717, 1718, 1719, 1720, 1721, 1722, 1723, 1724
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

When 9 occurs in A110566.

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[1724], f[ # ] == 9 &]

Extensions

Definition corrected by Jinyuan Wang, May 03 2020

A112817 Numbers k such that lcm(1,2,3,...,k)/11 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

33, 34, 35, 36, 37, 38, 39, 40, 41, 81, 82, 83, 84, 85, 86, 87, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

When 11 occurs in A110566.

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[430], f[ # ] == 11 &]
    Select[Range[450],1/11*LCM@@Range[#]==Denominator[HarmonicNumber[#]]&] (* Harvey P. Dale, Jan 06 2019 *)

Extensions

Name (definition) corrected by Harvey P. Dale, Jan 06 2019

A112818 Numbers k such that lcm(1,2,3,...,k)/13 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

156, 157, 158, 159, 160, 161, 27380, 27381, 27382, 27383, 27384, 27385, 27386, 27387, 27388, 27389, 27390, 27391, 27392, 27393, 27394, 27395, 27396, 27397, 27398, 27399, 27400, 27401, 27402, 27403, 27404, 27405, 27406, 27407, 27408
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

When 13 occurs in A110566.

Crossrefs

Programs

Extensions

Definition corrected by Jinyuan Wang, May 03 2020

A112819 Numbers k such that lcm(1,2,3,...,k)/15 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

20, 24, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 41889597, 41889598, 41889599, 41889600, 41889601, 41889602, 41889603, 41889604, 41889605, 41889606, 41889607
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

When 15 occurs in A110566.

Crossrefs

Programs

  • Mathematica
    a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 15, AppendTo[t, n]], {n, 10^6}]; t

Extensions

Definition corrected by Jinyuan Wang, May 03 2020
More terms from Chai Wah Wu, Mar 18 2021

A112820 Numbers k such that lcm(1,2,3,...,k)/17 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 79507, 79508, 79509, 79510, 79511, 79512, 79513, 79514, 79515, 79516, 79517, 79518, 79519, 79520, 79521, 79522, 79523, 79524, 79525, 79526, 79527, 79528
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

When 17 occurs in A110566.

Crossrefs

Programs

  • Mathematica
    a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 17, AppendTo[t, n]], {n, 79528}]; t

Extensions

Definition corrected by Jinyuan Wang, May 03 2020

A112821 Numbers n such that lcm(1,2,3,...,n)/19 equals the denominator of the n-th harmonic number H(n).

Original entry on oeis.org

343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

Positions where 19 occurs in A110566.

Crossrefs

Programs

  • Mathematica
    a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 19, AppendTo[t, n]], {n, 10^6}]; t
    Select[Range[500],Denominator[HarmonicNumber[#]]==LCM@@Range[#]/19&] (* Harvey P. Dale, Jan 29 2012 *)

Extensions

Definition corrected by Max Alekseyev, Mar 03 2007

A342350 Numbers k such that lcm(1,2,3,...,k)/21 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

38272753, 38272754, 38272755, 38272756, 38272757, 38272758, 38272759, 38272760, 38272761, 38272762, 38272763, 38272764, 38272765, 38272766, 38272767, 38272768, 38272769, 38272770, 38272771, 38272772, 38272773, 38272774, 38272775, 38272776, 38272777, 38272778
Offset: 1

Views

Author

Chai Wah Wu, Mar 17 2021

Keywords

Comments

Positions where 21 occurs in A110566.

Crossrefs

A358557 Numbers k for which denominator(H(k)) < LCM(1..k), where harmonic numbers H(k) = Sum_{i=1..k} 1/i = r(k)/q(k).

Original entry on oeis.org

6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 25, 26, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 100, 101, 102
Offset: 1

Views

Author

Yifan Xie, Nov 22 2022

Keywords

Comments

LCM(1..k) is a common denominator for the harmonic numbers, and the present terms k are where the sum reduces to a smaller denominator (A002805).
We can find a prime p and a pair of positive integers t < p and o for every positive integer k that p^o*t <= k < p^o*(t+1). For positive integers i that are not divisible by p^o, a multiple of p will be added to the numerator of the reciprocal sum; for i's that are divisible by p^o, the number that will be added to the numerator of the reciprocal sum is divisible by r(t). So k is in the sequence if and only if p^o*t <= k < p^o*(t+1) where p is a prime and p divides r(t).
The sequence is the answer to Problem 23 of the 2022 AMC12A.

Crossrefs

Cf. A001008/A002805 (harmonic numbers), A003418 (LCM).
Cf. A110566 (common factor).
Cf. A098464 (complement), A112813.
Cf. A330680 (numbers that begin a run of consecutive integers not in the sequence).

Programs

  • Mathematica
    Select[Range[100], Denominator[HarmonicNumber[#]] < LCM @@ Range[#] &] (* Amiram Eldar, Nov 25 2022 *)
  • PARI
    isok(n) = lcm(vector(n, i, i)) <> denominator(sum(i=1, n, 1/i)); \\ Thomas Scheuerle, Nov 23 2022

Formula

A110566(a(n)) > 1. - Thomas Scheuerle, Nov 23 2022
Previous Showing 11-20 of 23 results. Next