cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A157357 Products of 3 distinct triple-safe primes.

Original entry on oeis.org

777239, 1555559, 3112199, 4409399, 10635959, 12192599, 23348519, 23796743, 30612839, 47610023, 48628127, 55778519, 67454423, 91581239, 95286263, 97290047, 99883319, 102996599, 104812679, 135002663, 137841647, 148398599, 162707543, 170450999, 172007639, 186520823
Offset: 1

Views

Author

Keywords

Examples

			777239=23*47*719; 23, 47, and 719 are triple-safe prime numbers.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[PrimeQ[cx=(c-1)/2]&&PrimeQ[cy=(cx-1)/2]&&PrimeQ[(cy-1)/2]&&PrimeQ[dx=(d-1)/2]&&PrimeQ[dy=(dx-1)/2]&&PrimeQ[(dy-1)/2]&&PrimeQ[ex=(e-1)/2]&&PrimeQ[ey=(ex-1)/2]&&PrimeQ[(ey-1)/2],AppendTo[lst,n]]]],{n,9!,11!}];lst
  • PARI
    list(lim)=my(v=List(), P=select(p->isprime(p\2) && isprime(p\4) && isprime(p\8), primes([11, sqrtint(lim\11+1)-1])), p, q, t); for(i=1, #P, p=P[i]; if(p^3>=lim, break); for(j=i+1, #P, q=P[j]; t=p*q; forprime(r=q+4, lim\t, if(isprime(r\2) && isprime(r\4) && isprime(r\8), listput(v, r*t))))); Set(v); \\ Charles R Greathouse IV, Oct 14 2021

Extensions

a(5)-a(26) from Charles R Greathouse IV, Oct 14 2021

A113433 Semi-Pierpont semiprimes: products of exactly two Pierpont primes A005109.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 25, 26, 34, 35, 38, 39, 49, 51, 57, 65, 74, 85, 91, 95, 111, 119, 133, 146, 169, 185, 194, 218, 219, 221, 247, 259, 289, 291, 323, 326, 327, 361, 365, 386, 481, 485, 489, 511, 514, 545, 579, 629, 679, 703, 763, 771, 815, 866, 949, 965
Offset: 1

Views

Author

Jonathan Vos Post, Nov 01 2005

Keywords

Comments

Semiprime both of whose prime factors are Pierpont primes (A005109), which are primes of the form (2^K)*(3^L)+1. Not to be confused with A113432: Pierpont semiprimes [Semiprimes of the form (2^K)*(3^L)+1]. This terminology itself is by analogy to what Tomaszewski used for the Sophie Germain counterparts A111153 and A111206.

Examples

			a(1) = 4 = 2^2 = [(2^0)*(3^0)+1]*[(2^1)*(3^0)+1] = A005109(1)*A005109(1).
a(2) = 6 = 2*3 = [(2^0)*(3^0)+1]*[(2^1)*(3^0)+1] = A005109(1)*A005109(2).
a(3) = 9 = 3^2 = [(2^1)*(3^0)+1]*[(2^1)*(3^0)+1] = A005109(2)*A005109(2).
a(4) = 10 = 2*5 = [(2^0)*(3^0)+1]*[(2^2)*(3^0)+1] = A005109(1)*A005109(3).
a(5) = 14 = 2*7 = [(2^0)*(3^0)+1]*[(2^1)*(3^1)+1] = A005109(1)*A005109(4).
a(6) = 15 = 3*5 = [(2^1)*(3^0)+1]*[(2^2)*(3^0)+1] = A005109(2)*A005109(3).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], Plus @@ Last /@ FactorInteger[ # ] == 2 && And @@ (Max @@ First /@ FactorInteger[ # - 1] < 5 &) /@ First /@ FactorInteger[ # ] &] (* Ray Chandler, Jan 24 2006 *)

Formula

{a(n)} = Semiprimes A001358 both of whose factors are of the form (2^K)*(3^L)+1. {a(n)} = {A005109(i)*A005109(j) for integers i and j not necessarily distinct}.

A113434 Semi-Pierpont semiprimes which are also Pierpont semiprimes.

Original entry on oeis.org

4, 9, 10, 25, 49, 65, 289
Offset: 1

Views

Author

Jonathan Vos Post, Nov 01 2005

Keywords

Comments

Semiprimes both of whose prime factors are Pierpont primes (A005109), which are primes of the form (2^K)*(3^L)+1 and where the semiprime is itself of the form (2^K)*(3^L)+1.
No more under 10^50; what is the next element of this sequence?
No more terms <= 10^100. - Robert Israel, Mar 10 2017
This sequence is complete, see Links. - Charlie Neder, Feb 04 2019

Examples

			a(1) = 4 = 2^2 = [(2^0)*(3^0)+1]*[(2^0)*(3^0)+1] = (2^0)*(3^1)+1.
a(2) = 9 = 3^2 = [(2^1)*(3^0)+1]*[(2^1)*(3^0)+1] = (2^3)*(3^0)+1.
a(3) = 10 = 2*5 = [(2^0)*(3^0)+1]*[(2^2)*(3^0)+1] = (2^0)*(3^2)+1.
a(4) = 25 = 5^2 = [(2^2)*(3^0)+1]*[(2^2)*(3^0)+1] = (2^3)*(3^1)+1.
a(5) = 49 = 7^2 = [(2^1)*(3^1)+1]*[(2^1)*(3^1)+1] = (2^4)*(3^1)+1.
a(6) = 65 = 5*13 = [(2^2)*(3^0)+1]*[(2^2)*(3^1)+1] = (2^6)*(3^0)+1.
a(7) = 289 = 17^2 = [(2^4)*(3^0)+1]*[(2^4)*(3^0)+1] = (2^5)*(3^2)+1.
		

Crossrefs

Programs

  • Maple
    N:= 10^100: # to get all terms <= N
    PP:= select(isprime, {seq(seq(1+2^i*3^j, i=0..ilog2((N-1)/3^j)),j=0..floor(log[3](N-1)))}):
    SP:= select(t -> t <= N and t = 1+2^padic:-ordp(t-1,2)*3^padic:-ordp(t-1,3), [seq(seq(PP[i]*PP[j], j=1..i),i=1..nops(PP))]):
    sort(convert(SP,list)); # Robert Israel, Mar 10 2017

Formula

{a(n)} = intersection of A113432 and A113433. {a(n)} = Semiprimes A001358 of the form (2^K)*(3^L)+1 both of whose factors are of the form (2^K)*(3^L)+1. {a(n)} = {integers P such that, for nonnegative integers I, J, K, L, m, n there is a solution to (2^I)*(3^J)+1 = [(2^K)*(3^L)+1]*[(2^m)*(3^n)+1] where both [(2^K)*(3^L)+1] and [(2^m)*(3^n)+1] are prime}.

A111207 Numbers that are both Sophie Germain semiprimes and semi-Sophie Germain semiprimes.

Original entry on oeis.org

4, 10, 25, 46, 55, 106, 123, 145, 159, 205, 226, 267, 339, 358, 415, 466, 529, 573, 583, 718, 753, 843, 865, 979, 1077, 1195, 1243, 1257, 1293, 1366, 1405, 1465, 1473, 1486, 2098, 2157, 2206, 2427, 2455, 2545, 2563, 2581, 2599, 2629, 2809, 2818, 2998, 3057
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Oct 24 2005

Keywords

Comments

This is the intersection of the sequence of Sophie Germain semiprimes (A111153) and semi-Sophie Germain semiprimes (A111206).

Examples

			a(4)=46 because 46 is the 4th semiprime such that 2*46+1=93 is a semiprime and both of its factors are Sophie Germain primes: 2*2+1=5 and 2*23+1=47.
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_] := AllTrue[{n, 2*n + 1}, PrimeOmega[#] == 2 &] && AllTrue[First /@ FactorInteger[n], PrimeQ[2*# + 1] &]; Select[Range[3000], seqQ] (* Amiram Eldar, May 10 2020 *)

Extensions

Extended by Ray Chandler, Oct 31 2005

A157355 Products of 3 distinct not safe primes.

Original entry on oeis.org

78, 102, 114, 174, 186, 222, 246, 258, 318, 366, 402, 426, 438, 442, 474, 494, 534, 582, 606, 618, 646, 654, 663, 678, 741, 754, 762, 786, 806, 822, 834, 894, 906, 942, 962, 969, 978, 986, 1038, 1054, 1066, 1086, 1102, 1118, 1131, 1146, 1158, 1178, 1182
Offset: 1

Views

Author

Keywords

Comments

78=2*3*13; 2,3 and 13 are not safe prime numbers,...

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[ !PrimeQ[(c-1)/2]&&!PrimeQ[(d-1)/2]&&!PrimeQ[(e-1)/2],AppendTo[lst,n]]]],{n,7!}];lst

A157356 Products (semiprimes) of two distinct double-safe primes.

Original entry on oeis.org

253, 517, 1081, 1837, 3841, 3949, 7849, 7909, 8257, 15829, 16537, 16873, 22429, 31669, 33097, 33793, 44869, 45397, 46897, 54109, 59953, 62029, 63877, 65197, 66217, 66517, 67633, 79717, 83149, 83677, 84997, 93817, 94921, 95833, 108229
Offset: 1

Views

Author

Keywords

Comments

253=11*23; 11 and 23 are double safe prime numbers; (11-1)/2=5; (5-1)/2=2(prime); (23-1)/2=11; (11-1)/2=5(prime), ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[Plus@@Last/@FactorInteger[n]==2,a=Length[First/@FactorInteger[n]];If[a==2,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];If[PrimeQ[cx=(c-1)/2]&&PrimeQ[(cx-1)/2]&&PrimeQ[dx=(d-1)/2]&&PrimeQ[(dx-1)/2],AppendTo[lst,n]]]],{n,9!}];lst
Previous Showing 11-16 of 16 results.