cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A303026 Matula-Goebel numbers of series-reduced anti-binary (no unary or binary branchings) rooted trees.

Original entry on oeis.org

1, 8, 16, 32, 64, 76, 128, 152, 212, 256, 304, 424, 512, 524, 608, 722, 848, 1024, 1048, 1216, 1244, 1444, 1532, 1696, 2014, 2048, 2096, 2432, 2488, 2876, 2888, 3064, 3392, 3524, 4028, 4096, 4192, 4864, 4976, 4978, 5204, 5618, 5752, 5776, 6128, 6476, 6784
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Examples

			The sequence of series-reduced anti-binary rooted trees together with their Matula-Goebel numbers begins:
     1: o
     8: (ooo)
    16: (oooo)
    32: (ooooo)
    64: (oooooo)
    76: (oo(ooo))
   128: (ooooooo)
   152: (ooo(ooo))
   212: (oo(oooo))
   256: (oooooooo)
   304: (oooo(ooo))
   424: (ooo(oooo))
   512: (ooooooooo)
   524: (oo(ooooo))
   608: (ooooo(ooo))
   722: (o(ooo)(ooo))
   848: (oooo(oooo))
  1024: (oooooooooo)
  1048: (ooo(ooooo))
  1216: (oooooo(ooo))
  1244: (oo(oooooo))
  1444: (oo(ooo)(ooo))
  1532: (oo(oo(ooo)))
  1696: (ooooo(oooo))
  2014: (o(ooo)(oooo))
  2048: (ooooooooooo)
		

Crossrefs

Programs

  • Mathematica
    azQ[n_]:=Or[n==1,And[PrimeOmega[n]>2,And@@Cases[FactorInteger[n],{p_,_}:>azQ[PrimePi[p]]]]]
    Select[Range[1000],azQ]

A320270 Number of unlabeled balanced semi-binary rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 10, 13, 19, 25, 35, 46, 65, 88, 124, 171, 242, 334, 470, 653, 921, 1287, 1822, 2565, 3640, 5144, 7311, 10360, 14734, 20918, 29781, 42361, 60389, 86069, 122893, 175479, 250922, 358863
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

An unlabeled rooted tree is semi-binary if all out-degrees are <= 2, and balanced if all leaves are the same distance from the root. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Examples

			The a(1) = 1 through a(7) = 6 balanced semi-binary rooted trees:
  o  (o)  (oo)   ((oo))   (((oo)))   ((o)(oo))    ((oo)(oo))
          ((o))  (((o)))  ((o)(o))   ((((oo))))   (((o)(oo)))
                          ((((o))))  (((o)(o)))   (((((oo)))))
                                     (((((o)))))  ((((o)(o))))
                                                  (((o))((o)))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    saur[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[saur/@ptn]],SameQ@@Length/@Position[#,{}]&],{ptn,Select[IntegerPartitions[n-1],Length[#]<=2&]}]];
    Table[Length[saur[n]],{n,20}]

A339193 Matula-Goebel numbers of unlabeled binary rooted semi-identity trees.

Original entry on oeis.org

1, 4, 14, 86, 301, 886, 3101, 3986, 13766, 13951, 19049, 48181, 57026, 75266, 85699, 199591, 263431, 295969, 298154, 302426, 426058, 882899
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2021

Keywords

Comments

Definition: A positive integer belongs to the sequence iff it is 1, 4, or a squarefree semiprime whose prime indices both already belong to the sequence. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
In a semi-identity tree, only the non-leaf branches of any given vertex are distinct. Alternatively, a rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.
The Matula-Goebel number of an unlabeled rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of terms together with the corresponding unlabeled rooted trees begins:
      1: o
      4: (oo)
     14: (o(oo))
     86: (o(o(oo)))
    301: ((oo)(o(oo)))
    886: (o(o(o(oo))))
   3101: ((oo)(o(o(oo))))
   3986: (o((oo)(o(oo))))
  13766: (o(o(o(o(oo)))))
  13951: ((oo)((oo)(o(oo))))
  19049: ((o(oo))(o(o(oo))))
  48181: ((oo)(o(o(o(oo)))))
  57026: (o((oo)(o(o(oo)))))
  75266: (o(o((oo)(o(oo)))))
  85699: ((o(oo))((oo)(o(oo))))
		

Crossrefs

Counting these trees by number of nodes gives A063895.
A000081 counts unlabeled rooted trees with n nodes.
A111299 ranks binary trees, counted by A001190.
A276625 ranks identity trees, counted by A004111.
A306202 ranks semi-identity trees, counted by A306200.
A306203 ranks balanced semi-identity trees, counted by A306201.
A331965 ranks lone-child avoiding semi-identity trees, counted by A331966.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mgbiQ[n_]:=Or[n==1,n==4,SquareFreeQ[n]&&PrimeOmega[n]==2&&And@@mgbiQ/@primeMS[n]];
    Select[Range[1000],mgbiQ]

A298126 Matula-Goebel numbers of rooted trees in which all outdegrees are even.

Original entry on oeis.org

1, 4, 14, 16, 49, 56, 64, 86, 106, 196, 224, 256, 301, 344, 371, 424, 454, 526, 622, 686, 784, 886, 896, 1024, 1154, 1204, 1376, 1484, 1589, 1696, 1816, 1841, 1849, 2104, 2177, 2279, 2386, 2401, 2488, 2744, 2809, 2846, 3101, 3136, 3238, 3544, 3584, 3986, 4039
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2018

Keywords

Examples

			Sequence of trees begins:
1   o
4   (oo)
14  (o(oo))
16  (oooo)
49  ((oo)(oo))
56  (ooo(oo))
64  (oooooo)
86  (o(o(oo)))
106 (o(oooo))
196 (oo(oo)(oo))
224 (ooooo(oo))
256 (oooooooo)
301 ((oo)(o(oo)))
344 (ooo(o(oo)))
371 ((oo)(oooo))
424 (ooo(oooo))
454 (o((oo)(oo)))
526 (o(ooo(oo)))
622 (o(oooooo))
686 (o(oo)(oo)(oo))
784 (oooo(oo)(oo))
886 (o(o(o(oo))))
896 (ooooooo(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    etQ[n_]:=Or[n===1,With[{m=primeMS[n]},EvenQ@Length@m&&And@@etQ/@m]];
    Select[Range[10000],etQ]

A298303 Matula-Goebel numbers of rooted trees with thinning limbs.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 39, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 69, 70, 72, 75, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2018

Keywords

Comments

An unlabeled rooted tree has thinning limbs if its outdegrees are weakly decreasing from root to leaves.

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    thinQ[t_]:=And@@Cases[t,b_List:>Length[b]>=Max@@Length/@b,{0,Infinity}];
    Select[Range[200],thinQ[MGtree[#]]&]

A298534 Matula-Goebel numbers of rooted trees such that every branch of the root has the same number of leaves.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 53, 54, 55, 59, 60, 61, 62, 64, 66, 67, 71, 72, 73, 75, 79, 80, 81, 83, 88, 89, 90, 91, 93, 96, 97, 99, 100
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
4  (oo)
5  (((o)))
6  (o(o))
7  ((oo))
8  (ooo)
9  ((o)(o))
10 (o((o)))
11 ((((o))))
12 (oo(o))
13 ((o(o)))
15 ((o)((o)))
16 (oooo)
17 (((oo)))
18 (o(o)(o))
19 ((ooo))
20 (oo((o)))
22 (o(((o))))
23 (((o)(o)))
24 (ooo(o))
25 (((o))((o)))
27 ((o)(o)(o))
29 ((o((o))))
30 (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    nn=2000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    leafcount[n_]:=If[n===1,1,With[{m=primeMS[n]},If[Length[m]===1,leafcount[First[m]],Total[leafcount/@m]]]];
    Select[Range[nn],SameQ@@leafcount/@primeMS[#]&]

A317719 Numbers that are not powerful tree numbers.

Original entry on oeis.org

6, 10, 12, 13, 14, 15, 18, 20, 21, 22, 24, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a powerful tree number iff either n = 1 or n is a prime number whose prime index is a powerful tree number, or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all powerful tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of numbers that are not powerful tree numbers together with their Matula-Goebel trees begins:
   6: (o(o))
  10: (o((o)))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  29: ((o((o))))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],!powgoQ[#]&]

A298538 Matula-Goebel numbers of rooted trees such that every branch of the root has the same number of nodes.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 187
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
4  (oo)
5  (((o)))
7  ((oo))
8  (ooo)
9  ((o)(o))
11 ((((o))))
13 ((o(o)))
16 (oooo)
17 (((oo)))
19 ((ooo))
23 (((o)(o)))
25 (((o))((o)))
27 ((o)(o)(o))
29 ((o((o))))
31 (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    nn=500;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[MGweight/@primeMS[n]]];
    Select[Range[nn],SameQ@@MGweight/@primeMS[#]&]

A343663 Number of unlabeled binary rooted semi-identity plane trees with 2*n - 1 nodes.

Original entry on oeis.org

1, 1, 2, 4, 12, 34, 108, 344, 1136, 3796, 12920, 44442, 154596, 542336, 1917648, 6825464, 24439008, 87962312, 318087216, 1155090092, 4210494616, 15400782912, 56508464736, 207935588586, 767162495940, 2837260332472, 10516827106016, 39063666532784, 145378611426512
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Comments

In a semi-identity tree, only the non-leaf branches of any given vertex are required to be distinct. Alternatively, a rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

Examples

			The a(1) = 1 through a(5) = 12 trees:
  o  (oo)  ((oo)o)  (((oo)o)o)  ((((oo)o)o)o)
           (o(oo))  ((o(oo))o)  (((o(oo))o)o)
                    (o((oo)o))  (((oo)o)(oo))
                    (o(o(oo)))  ((o((oo)o))o)
                                ((o(o(oo)))o)
                                ((o(oo))(oo))
                                ((oo)((oo)o))
                                ((oo)(o(oo)))
                                (o(((oo)o)o))
                                (o((o(oo))o))
                                (o(o((oo)o)))
                                (o(o(o(oo))))
		

Crossrefs

The not necessarily semi-identity version is A000108.
The non-plane version is A063895, ranked by A339193.
The Matula-Goebel numbers in the non-plane case are A339193.
The not-necessarily binary version is A343937.
A000081 counts unlabeled rooted trees with n nodes.
2*A001190 - 1 counts binary trees, ranked by A111299.
A001190 counts semi-binary trees, ranked by A292050.
A004111 counts identity trees, ranked by A276625.
A306200 counts semi-identity trees, ranked by A306202.
A306201 counts balanced semi-identity trees, ranked by A306203.
A331966 counts lone-child avoiding semi-identity trees, ranked by A331965.

Programs

  • Mathematica
    crsiq[n_]:=Join@@Table[Select[Union[Tuples[crsiq/@ptn]],#=={}||#=={{},{}}||Length[#]==2&&(UnsameQ@@DeleteCases[#,{}])&],{ptn,Join@@Permutations/@IntegerPartitions[n-1]}];
    Table[Length[crsiq[n]],{n,1,11,2}]
    (* Second program: *)
    m = 29; p[_] = 1;
    Do[p[x_] = 1 + x + x (p[x]^2 - p[x^2]) + O[x]^m // Normal, {m}];
    CoefficientList[p[x], x] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
  • PARI
    seq(n)={my(p=O(1)); for(n=1, n, p=1 + x + x*(p^2-subst(p,x,x^2))); Vec(p)} \\ Andrew Howroyd, May 07 2021

Formula

G.f.: x*A(x) where A(x) satisfies A(x) = 1 + x + x*(A(x)^2 - A(x^2)). - Andrew Howroyd, May 07 2021

Extensions

Terms a(13) and beyond from Andrew Howroyd, May 07 2021

A298205 Matula-Goebel numbers of rooted trees in which all outdegrees are either 0, 1, or 3.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 12, 18, 19, 20, 27, 30, 31, 37, 44, 45, 50, 61, 66, 67, 71, 75, 76, 99, 103, 110, 113, 114, 124, 125, 127, 148, 157, 165, 171, 186, 190, 193, 197, 222, 229, 242, 244, 268, 275, 279, 283, 284, 285, 310, 317, 331, 333, 353, 363, 366, 370, 379
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2018

Keywords

Examples

			Sequence of rooted trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
8  (ooo)
11 ((((o))))
12 (oo(o))
18 (o(o)(o))
19 ((ooo))
20 (oo((o)))
27 ((o)(o)(o))
30 (o(o)((o)))
31 (((((o)))))
37 ((oo(o)))
44 (oo(((o))))
45 ((o)(o)((o)))
50 (o((o))((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stQ[n_]:=Or[n===1,With[{m=primeMS[n]},MemberQ[{1,3},Length[m]]&&And@@stQ/@m]];
    Select[Range[10000],stQ]
Previous Showing 21-30 of 40 results. Next