cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A114405 5-almost prime gaps. First differences of A014614.

Original entry on oeis.org

16, 24, 8, 28, 4, 8, 42, 6, 8, 4, 20, 8, 35, 9, 12, 6, 2, 8, 20, 4, 8, 56, 10, 14, 4, 9, 3, 12, 20, 10, 6, 8, 4, 28, 4, 20, 32, 15, 21, 4, 2, 18, 4, 14, 26, 4, 15, 5, 4, 4, 8, 4, 2, 26, 16, 6, 2, 8, 20, 48, 20, 34, 6, 3, 27, 2, 4, 20, 1, 7, 16, 8, 4, 4, 6, 30, 6, 6, 12, 6, 3, 11
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

First occurrences of a(n)=1,2,3,.. are at n=69, 17, 27, 5, 48, 8, 70, 3, 14, 23, 82, 15, 150, 24, 38, 1, 172, 42, 258, 11, 39, 135, 102, 2, 779, 45, 65, 4, 518, 76, 263, 37, 211, 62, 13, 1009, 2463, 606, 254, 151, 3348, 7, 4513,... - R. J. Mathar, Oct 06 2007

Examples

			a(1) = 16 = 48-32 where 32 is the first 5-almost prime and 48 is the second.
a(2) = 24 = 72-48.
a(3) = 8 = 80-72.
a(4) = 28 = 108-80.
a(5) = 4 = 112-108.
a(6) = 8 = 120-112.
a(7) = 42 = 162-120.
a(8) = 6 = 168-162.
a(13) = 35 = 243-208.
a(22) = 56 = 368-312.
		

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[2000],PrimeOmega[#]==5&]] (* Harvey P. Dale, Sep 28 2019 *)

Formula

a(n) = A014614(n+1) - A014614(n).

Extensions

More terms from R. J. Mathar, Oct 06 2007

A114414 Records in 4-almost prime gaps ordered by merit.

Original entry on oeis.org

8, 12, 14, 21, 28
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

Next term (if it exists) associated with A014613 > 1030000. - R. J. Mathar, Mar 13 2007

Examples

			Records defined in terms of A114404 and A014613:
  n  A114404(n)  A114404(n)/log_10(A014613(n))
  =  ==========  =============================
  1      8       8/log_10(16)   = 6.64385619
  2      12      12/log_10(24)  = 8.6943213
  3      4       4/log_10(36)   = 2.57019442
  4      14      14/log_10(40)  = 8.73874891
  5      2       2/log_10(54)   = 1.15447195
  6      4       4/log_10(56)   = 2.2880834
  7      21      21/log_10(60)  = 11.810019
  ...
  13     22      22/log_10(104) = 10.9071078
  ...
  21     28      28/log_10(156) = 12.7671725
		

Crossrefs

Programs

  • Maple
    Digits := 16 : A114414 := proc() local n,a014613,a114414,rec ; a014613 := 16 ; a114414 := 8 ; rec := a114414/log(a014613) ; print(a114414) ; n := 17 ; while true do while numtheory[bigomega](n) <> 4 do n := n+1 ; od ; a114414 := n-a014613 ; if ( evalf(a114414/log(a014613)) > evalf(rec) ) then rec := a114414/log(a014613) ; print(a114414) ; fi ; a014613 := n ; n := n+1 : od ; end: A114414() ; # R. J. Mathar, Mar 13 2007

Formula

a(n) = records in A114404(n)/log_10(A014613(n)) = records in (A014613(n+1) - A014613(n))/log_10(A014613(n)).

A241540 Indices of primes p in A182514, i.e., a(n) = primepi(p) = A000720(A182514(n)).

Original entry on oeis.org

1, 2, 4, 30, 217, 49749629143526
Offset: 1

Views

Author

M. F. Hasler, Apr 25 2014

Keywords

Comments

a(6) = A214935(33) = A000720(A205827(33)).

Crossrefs

A114404 4-almost prime gaps. First differences of A014613.

Original entry on oeis.org

8, 12, 4, 14, 2, 4, 21, 3, 4, 2, 10, 4, 22, 6, 3, 1, 4, 10, 2, 4, 28, 5, 7, 2, 6, 6, 10, 5, 3, 4, 2, 14, 2, 10, 16, 18, 2, 1, 9, 2, 7, 13, 2, 10, 2, 2, 4, 2, 1, 13, 8, 3, 1, 4, 10, 24, 10, 17, 3, 15, 1, 2, 10, 4, 8, 4, 2, 2, 3, 15, 3, 3, 6, 3, 7, 4, 10, 4, 8, 6, 4, 2, 2, 8, 4, 1, 35, 1, 4, 7, 4, 8, 6
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 8 = 24-16 where 16 is the first 4-almost prime and 24 is the second.
a(2) = 12 = 36-24.
a(3) = 4 = 40-36.
a(4) = 14 = 54-40.
a(5) = 2 = 56-54.
a(6) = 4 = 60-56.
a(7) = 21 = 81-60.
a(13) = 22 = 126-104.
a(21) = 28 = 184-156.
		

Crossrefs

Programs

  • Maple
    A114404 := proc(nmax) local a,i,a014613 ; a := [] ; i := 1 ; a014613 := -1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 4 then if a014613 > 0 then a := [op(a),i-a014613] ; fi ; a014613 := i ; fi ; i := i+1 ; end: a ; end: A114404(200) ; # R. J. Mathar, May 10 2007
  • Mathematica
    Differences[Select[Range[800],Total[FactorInteger[#][[All,2]]]==4&]] (* Harvey P. Dale, Feb 14 2017 *)
    Select[Range[1000],PrimeOmega[#]==4&]//Differences (* Harvey P. Dale, May 12 2018 *)

Formula

a(n) = A014613(n+1) - A014613(n).

Extensions

Corrected and extended by R. J. Mathar, May 10 2007

A114406 6-almost prime gaps. First differences of A046306.

Original entry on oeis.org

32, 48, 16, 56, 8, 16, 84, 12, 16, 8, 40, 16, 70, 18, 24, 12, 4, 16, 40, 8, 16, 105, 7, 20, 28, 8, 18, 6, 24, 40, 20, 12, 16, 8, 56, 8, 40, 64, 30, 42, 8, 4, 27, 9, 8, 28, 52, 8, 30, 10, 8, 8, 16, 8, 4, 52, 32, 12, 4, 16, 40, 96, 40, 5, 63, 12, 6, 54, 4, 8, 40, 2, 14, 32, 16, 8, 8, 12, 45
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 32 = 96-64 where 64 is the first 6-almost prime and 96 is the second.
a(2) = 48 = 144-96.
a(3) = 16 = 160-144.
a(4) = 56 = 216-160.
a(5) = 8 = 224-216.
a(6) = 16 = 240-224.
a(7) = 84 = 324-240.
a(8) = 12 = 336-324.
a(22) = 105 = 729-624.
		

Crossrefs

Formula

a(n) = A046306(n+1) - A046306(n).

Extensions

More terms from R. J. Mathar, Aug 31 2007

A114407 7-almost prime gaps. First differences of A046308.

Original entry on oeis.org

64, 96, 32, 112, 16, 32, 168, 24, 32, 16, 80, 32, 140, 36, 48, 24, 8, 32, 80, 16, 32, 210, 14, 40, 56, 16, 36, 12, 48, 80, 40, 24, 32, 16, 112, 16, 80, 107, 21, 60, 84, 16, 8, 54, 18, 16, 56, 104, 16, 60, 20, 16, 16, 32, 16, 8, 104, 64, 24, 8, 32, 80, 192, 80, 10, 126, 24, 12
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Examples

			a(1) = 64 = 192-128 where 128 is the first 7-almost prime and 192 is the second.
a(2) = 96 = 288-192.
a(3) = 32 = 320-288.
a(4) = 112 = 432-320.
a(5) = 16 = 448-432.
a(6) = 32 = 480-448.
a(7) = 168 = 648-480.
a(8) = 24 = 672-648.
		

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[10000],PrimeOmega[#]==7&]] (* Harvey P. Dale, Oct 13 2019 *)

Formula

a(n) = A046308(n+1) - A046308(n).

Extensions

Corrected and extended by R. J. Mathar, Aug 31 2007

A114408 8-almost prime gaps. First differences of A046310.

Original entry on oeis.org

128, 192, 64, 224, 32, 64, 336, 48, 64, 32, 160, 64, 280, 72, 96, 48, 16, 64, 160, 32, 64, 420, 28, 80, 112, 32, 72, 24, 96, 160, 80, 48, 64, 32, 224, 32, 160, 214, 42, 120, 168, 32, 16, 108, 36, 32, 112, 208, 32, 120, 40, 32, 32, 64, 32, 16, 208, 128, 48
Offset: 1

Views

Author

Jonathan Vos Post, Dec 03 2005

Keywords

Examples

			a(1) = 128 = 384-256 = A046310(2) - A046310(1).
a(2) = 192 = 576-384.
a(3) = 64 = 640-576.
a(4) = 224 = 864-640.
a(5) = 32 = 896-864.
a(6) 64 = 960-896.
a(7) = 336 = 1296-960.
a(8) = 48 = 1344-1296.
a(22) = 420 = 2916-2496.
		

Crossrefs

Formula

a(n) = A046310(n+1) - A046310(n).

A114415 Records in 5-almost prime gaps ordered by merit.

Original entry on oeis.org

16, 24, 28, 42, 56, 70
Offset: 1

Views

Author

Jonathan Vos Post, Nov 25 2005

Keywords

Comments

Next term, if it exists, is associated with indices above 100000 in A114405 and A014614. - R. J. Mathar, May 10 2007

Examples

			Records defined in terms of A114405 and A014614:
  n  A114405(n)  A114405(n)/log_10(A014614(n))
  =  ==========  =============================
  1      16      16/log_10(32)  = 10.6301699
  2      24      24/log_10(48)  = 14.2751673
  3      8       8/log_10(72)   = 4.30725248
  4      28      28/log_10(80)  = 14.7129144
  5      4       4/log_10(108)  = 1.96712564
  6      8       8/log_10(112)  = 3.90392819
  7      42      42/log_10(120) = 20.2002592
  8      6       6/log_10(168)  = 2.69625443
  ...
  22     56      56/log_10(312) = 22.4524976
		

Crossrefs

Programs

  • Maple
    A014614 := proc(nmax) local a,i; a := [] ; i := 1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 5 then a := [op(a),i] ; fi ; i := i+1 ; end: a ; end: A114405 := proc(a014614) local a,i; a := [] ; for i from 2 to nops(a014614) do a := [op(a), op(i,a014614)-op(i-1,a014614)] ; od ; a ; end: a014614 := A014614(100000) : a114405 := A114405(a014614) : Digits := 30 : rec := -1 : for i from 1 to nops(a114405) do if evalf(a114405[i]/log(a014614[i])) > rec then printf("%d, ",a114405[i]) ; rec := evalf(a114405[i]/log(a014614[i])) ; fi ; od ; # R. J. Mathar, May 10 2007

Formula

a(n) = records in A114405(n)/log_10(A014614(n)) = records in (A014614(n+1) - A014614(n))/log_10(A014614(n)).

Extensions

a(6) from R. J. Mathar, May 10 2007

A130789 The primes prime(n) sorted according to increasing prime(n)/prime(n+1).

Original entry on oeis.org

3, 7, 2, 5, 13, 23, 19, 31, 11, 47, 113, 17, 53, 37, 61, 43, 89, 73, 83, 139, 29, 199, 67, 211, 181, 79, 41, 293, 131, 317, 241, 97, 151, 103, 157, 109, 167, 283, 173, 523, 59, 127, 337, 71, 233, 467, 1327, 163, 409, 251, 421, 509, 257, 263, 887, 359, 271, 193
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2007

Keywords

Comments

Or: primes sorted according to decreasing ratio A001223(n)/A000040(n). All values are conjectural, derived from the finite list up to prime(200000): large prime gaps at higher indices may still insert numbers above prime(200000) at low positions of the sequence.
Using a table of prime gaps, it is easy to determine that the sequence is correct for all primes < 10^18. - T. D. Noe, Jul 17 2007

Examples

			3/5 < 7/11 < 2/3 < 5/7 < 13/17 < 23/29 < 19/23 < 31/37 < 11/13 < ...
Numerators of this chain of inequalities define the sequence.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=60},Take[Transpose[SortBy[Partition[Prime[Range[20*nn]],2,1], #[[1]]/ #[[2]]&]][[1]],nn]] (* Harvey P. Dale, Dec 03 2014 *)

A166597 Let p = largest prime <= n, with p(0)=p(1)=0, and let q = smallest prime > n; then a(n) = q-p.

Original entry on oeis.org

2, 2, 1, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 2, 2, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 2, 2, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 2, 2, 4, 4
Offset: 0

Views

Author

Daniel Forgues, Oct 17 2009

Keywords

Comments

Note the large prime gap of 72 between 31397 and 31469. This is the prime gap with the largest merit (cf. A111870), 72/log(31397)=6.95352 for primes less than 100000. Also 72/(log(31397))^2=0.67154 (cf. conjectures of Cramer-Granville, Shanks and Wolf) is largest for primes less than 100000. - Daniel Forgues, Oct 23 2009

Examples

			a(0) = 2 since the least prime greater than 0 is 2 (gap of 2 from 0 to 2).
a(9) = 4 since the least prime greater than 9 is 11 (gap of 4 from 7 to 11).
a(11) = 2 since the least prime greater than 11 is 13 (gap of 2 from 11 to 13).
		

Crossrefs

Cf. A111870. - Daniel Forgues, Oct 23 2009
See A327441 for the classic G(n) version. - N. J. A. Sloane, Sep 11 2019

Programs

  • Maple
    2,2,seq(nextprime(n)-prevprime(n+1), n=2..100); # Ridouane Oudra, Dec 28 2024
  • Mathematica
    f[n_]:=Module[{a=If[PrimeQ[n],n,NextPrime[n,-1]]}, NextPrime[n]-a]; Join[{2,2},Array[f,120,2]] (* Harvey P. Dale, May 17 2011 *)
  • PARI
    a(n) = nextprime(n+1) - precprime(n); \\ Michel Marcus, Mar 02 2023

Formula

From Ridouane Oudra, Dec 28 2024: (Start)
a(n) = A001223(A000720(n)), for n>1.
a(n) = A151800(n) - A007917(n), for n>1.
a(n) = A007918(n+1) - A151799(n+1), for n>1. (End)

Extensions

Definition rephrased by N. J. A. Sloane, Oct 25 2009
Previous Showing 11-20 of 27 results. Next