cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A112056 Odd numbers of the form 4n-1 for which Jacobi-first-non-one(4n-1) differs from Jacobi-first-non-one(4n+1).

Original entry on oeis.org

47, 71, 119, 167, 191, 287, 311, 359, 407, 431, 479, 527, 551, 647, 671, 719, 767, 791, 839, 887, 911, 959, 1007, 1031, 1127, 1151, 1199, 1247, 1271, 1319, 1367, 1391, 1487, 1511, 1559, 1607, 1631, 1679, 1727, 1751, 1799, 1847, 1871, 1967
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Comments

Here Jacobi-first-non-one(m) (for odd numbers m) is defined as the first value of i >= 1, for which Jacobi symbol J(i,m) is not +1 (i.e. is either 0 or -1).

Crossrefs

Programs

  • Mathematica
    a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; 4*Select[Range[1000], a112046[2#] - a112046[2# - 1] != 0 &] - 1 (* Indranil Ghosh, May 24 2017 *)
  • Python
    from sympy import jacobi_symbol as J
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a(n): return a112046(2*n) - a112046(2*n - 1)
    print([4*n - 1 for n in range(1, 1001) if a(n)!=0]) # Indranil Ghosh, May 24 2017

Formula

a(n) = 4*A112054(n)-1.
a(n) = A112057(n)-2 = A112058(n)-1.

A112058 Mean of A112056 and A112057.

Original entry on oeis.org

48, 72, 120, 168, 192, 288, 312, 360, 408, 432, 480, 528, 552, 648, 672, 720, 768, 792, 840, 888, 912, 960, 1008, 1032, 1128, 1152, 1200, 1248, 1272, 1320, 1368, 1392, 1488, 1512, 1560, 1608, 1632, 1680, 1728, 1752, 1800, 1848, 1872, 1968
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Crossrefs

a(n) = A112056(n)+1 = A112057(n)-1 = (A112056(n)+A112057(n))/2.

Programs

  • Mathematica
    a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; 4*Select[Range[1000], a112046[2#] - a112046[2# - 1] != 0 &] (* Indranil Ghosh, May 24 2017 *)
  • Python
    from sympy import jacobi_symbol as J
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a(n): return a112046(2*n) - a112046(2*n - 1)
    print([4*n for n in range(1, 1001) if a(n)!=0]) # Indranil Ghosh, May 24 2017

Formula

a(n) = 4*A112054(n).

A286466 Compound filter: a(n) = P(A112049(n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 2, 5, 12, 2, 16, 5, 38, 7, 16, 9, 94, 2, 16, 23, 138, 2, 67, 5, 80, 16, 16, 9, 355, 7, 16, 38, 80, 2, 436, 5, 530, 16, 16, 40, 706, 2, 16, 23, 302, 2, 436, 5, 80, 67, 16, 9, 1228, 7, 67, 23, 80, 2, 277, 23, 302, 16, 16, 14, 2021, 2, 16, 80, 2082, 16, 436, 5, 80, 16, 436, 9, 2704, 2, 16, 80, 80, 16, 436, 5, 1178, 121, 16, 9, 2086, 16, 16, 23, 302, 2, 1771
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Comments

Here the information combined together to a(n) consists of A046523(n), giving essentially the prime signature of n, and the index of the first prime p >= 1 for which the Jacobi symbol J(p,2n+1) is not +1 (i.e. is either 0 or -1), the value which is returned by A112049(n).

Crossrefs

Programs

  • PARI
    A112049(n) = for(i=1,(2*n),if((kronecker(i,(n+n+1)) < 1),return(primepi(i))));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286466(n) = (1/2)*(2 + ((A112049(n)+A046523(n))^2) - A112049(n) - 3*A046523(n));
    for(n=1, 10000, write("b286466.txt", n, " ", A286466(n)));
    
  • Python
    from sympy import jacobi_symbol as J, factorint, isprime, primepi
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a049084(n): return primepi(n) if isprime(n) else 0
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a112049(n): return a049084(a112046(n))
    def a(n): return T(a112049(n), a046523(n)) # Indranil Ghosh, May 11 2017
  • Scheme
    (define (A286466 n) (* (/ 1 2) (+ (expt (+ (A112049 n) (A046523 n)) 2) (- (A112049 n)) (- (* 3 (A046523 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A112049(n)+A046523(n))^2) - A112049(n) - 3*A046523(n)).

A053761 Least positive integer k for which the Jacobi symbol (k|2*n-1) is less than 1, where 2*n-1 is a nonsquare; a(n)=0 if 2*n-1 is a square.

Original entry on oeis.org

0, 2, 2, 3, 0, 2, 2, 3, 3, 2, 2, 5, 0, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 0, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 7, 5, 2, 2, 3, 0, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 7, 0, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 5, 0, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 7, 5, 2, 2, 3
Offset: 1

Views

Author

Steven Finch, Apr 05 2000

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 443-448.
  • Paulo Ribenboim, The New Book of Prime Number Records, 3rd ed., Springer-Verlag 1996; Math. Rev. 96k:11112.

Crossrefs

Programs

  • Maple
    A053761 := proc(n) if issqr(2*n-1) then return 0 ; else for k from 1 do if numtheory[jacobi](k,2*n-1) < 1 then return k; end if; end do: end if; end proc: seq(A053761(n),n=1..100) ; # R. J. Mathar, Aug 08 2010
  • Mathematica
    a[n_] := If[IntegerQ[Sqrt[2*n - 1]], Return[0], For[ k = 1, True, k++, If[ JacobiSymbol[k, 2*n - 1] < 1 , Return[k]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 20 2013, after R. J. Mathar *)
  • PARI
    A112046(n) = for(i=1,(2*n),if((kronecker(i,(n+n+1)) < 1),return(i)));
    A053761(n) = if(issquare((2*n)-1),0,A112046(n-1));
    for(n=1, 10000, write("b053761.txt", n, " ", A053761(n))); \\ Antti Karttunen, May 10 2017
    
  • Scheme
    (define (A053761 n) (if (= 1 n) 0 (* (- 1 (A010052 (+ n n -1))) (A112046 (- n 1))))) ;; Antti Karttunen, May 10 2017

Formula

a(1) = 0; for n > 1, a(n) = (1-A010052((2*n)-1)) * A112046(n-1). - Antti Karttunen, May 10 2017

Extensions

More terms from R. J. Mathar, Aug 08 2010

A112055 a(n) = A112054(n)/6.

Original entry on oeis.org

2, 3, 5, 7, 8, 12, 13, 15, 17, 18, 20, 22, 23, 27, 28, 30, 32, 33, 35, 37, 38, 40, 42, 43, 47, 48, 50, 52, 53, 55, 57, 58, 62, 63, 65, 67, 68, 70, 72, 73, 75, 77, 78, 82, 83, 85, 87, 88, 90, 92, 93, 97, 98, 100, 102, 103, 107, 108, 110, 112, 113, 117, 118, 120, 122
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Crossrefs

Cf. A112054, A112082 (complement), A112085 (first differences).

Programs

  • Mathematica
    a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Select[Range[1000], a112046[2#] - a112046[2# - 1] != 0 &]/6 (* Indranil Ghosh, May 25 2017 *)
  • Python
    from sympy import jacobi_symbol as J
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a(n): return a112046(2*n) - a112046(2*n - 1)
    print([n//6 for n in range(1, 201) if a(n)!=0]) # Indranil Ghosh, May 25 2017

A112057 Odd numbers of the form 4n+1 for which Jacobi-first-non-one(4n-1) differs from Jacobi-first-non-one(4n+1).

Original entry on oeis.org

49, 73, 121, 169, 193, 289, 313, 361, 409, 433, 481, 529, 553, 649, 673, 721, 769, 793, 841, 889, 913, 961, 1009, 1033, 1129, 1153, 1201, 1249, 1273, 1321, 1369, 1393, 1489, 1513, 1561, 1609, 1633, 1681, 1729, 1753, 1801, 1849, 1873, 1969
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Comments

The definition of Jacobi-first-non-one is given in A112056.

Crossrefs

a(n) = A112056(n)+2 = A112058(n)+1.

Programs

  • Mathematica
    a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; 4*Select[Range[1000], a112046[2#] - a112046[2# - 1] != 0 &] + 1 (* Indranil Ghosh, May 25 2017 *)
  • PARI
    jfno(n) = my(k = 1); while(kronecker(k, n) == 1, k++); k;
    lista(nn) = {forstep(n=5, nn, 4, if (jfno(n-2) != jfno(n), print1(n, ", ")););} \\ Michel Marcus, Jan 30 2018

Formula

a(n) = 4*A112054(n) + 1.

A112059 Nonzero terms of A112053 and A112080.

Original entry on oeis.org

2, -2, 4, 8, -2, 12, -6, 12, 2, -2, -6, 18, -6, 2, -6, -4, 2, -2, 18, 2, -2, 24, 6, -2, 6, -8, 4, 2, -2, -6, 32, -6, 2, -6, -10, 2, -2, 28, 2, -2, 4, 38, -2, 6, -6, 4, 2, -2, -4, 42, -6, 2, -8, -4, 2, -2, 2, -2, 6, 8, -2, 48, -6, 4, 2, -2, -10, 6, -12, 2, -6, -4, 2, -2, 2, -2, 52, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Crossrefs

Programs

  • Python
    from sympy import jacobi_symbol as J
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a(n): return a112046(2*n) - a112046(2*n - 1)
    print([a(n) for n in range(1, 201) if a(n)!=0]) # Indranil Ghosh, May 25 2017

Formula

a(n) = A112053(A112054(n)).

A227198 Odd terms in A227197.

Original entry on oeis.org

9, 15, 25, 33, 39, 49, 57, 63, 81, 87, 95, 105, 111, 119, 121, 129, 135, 145, 153, 159, 169, 177, 183, 201, 207, 215, 225, 231, 249, 255, 265, 273, 279, 289, 297, 303, 321, 327, 335, 345, 351, 361, 369, 375, 385, 393, 399, 417, 423, 441, 447, 455, 465, 471, 489
Offset: 1

Views

Author

Antti Karttunen, Jul 06 2013

Keywords

Comments

Gives all terms n for which A090368((n+1)/2) = A112046((n-1)/2).
Contains all odd squares. What else?

Crossrefs

Programs

  • PARI
    A227196(n) = for(k=1, n, if(kronecker(k, n)<1, return(k)))
    for(n=2,1000,if((0==kronecker(A227196(n),n)&&1==(n%2)),print1(n,", ")))

A112050 Length of the longest prefix of 1's in the Jacobi-vector {J(2n+1,1),J(2n+1,2),...,J(2n+1,2n)}.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 6, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 6, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 6, 10, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 12, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 6, 4, 1, 1, 2, 2, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2005

Keywords

Crossrefs

Cf. A112046.

Programs

  • Mathematica
    a112046[n_]:=Block[{i=1}, While[JacobiSymbol[i, 2n + 1]==1, i++]; i]; Table[a112046[n] - 1, {n, 102}] (* Indranil Ghosh, May 24 2017 *)
  • Python
    from sympy import jacobi_symbol as J
    def a112046(n):
        i=1
        while True:
            if J(i, 2*n + 1)!=1: return i
            else: i+=1
    def a(n): return a112046(n) - 1
    print([a(n) for n in range(1, 103)]) # Indranil Ghosh, May 24 2017

Formula

a(n) = A112046(n) - 1.

Extensions

Name clarified by Joerg Arndt, May 24 2017

A298991 Indices i in A112058 where records of 17*i - 3*A112058(i)/8 occur.

Original entry on oeis.org

2, 5, 13, 21, 24, 32, 40, 43, 51, 1470, 1478, 2701, 12032, 12040, 12048, 12051, 12059, 12067, 12070, 12078, 13301, 14524, 14683, 14691, 14699, 14702, 14710, 14718, 14721, 14729
Offset: 1

Views

Author

A.H.M. Smeets, Jan 31 2018

Keywords

Crossrefs

Programs

  • Python
    i, n, rec = 0, 0, 0
    while n < 1000:
        i = i+1
        if 17*i-3*A112058(i)//8 > rec:
            n, rec = n+1, 17*i-3*A112058(i)//8
            print(n,i)
Previous Showing 11-20 of 20 results.