Original entry on oeis.org
1, 2, 26, 426, 8178, 176802, 4206618, 108577674, 3011332338, 89141101506, 2802596567706, 93232011912426, 3271729161905010, 120810104634555234, 4683805718871051162, 190294015841923438026, 8087576641287426829170, 358981130096398432055682, 16615841072836741527510810
Offset: 0
-
n := 5: seq(coeff(series( hypergeom([n+1/2, 1], [], 2*x)/hypergeom([n-1/2, 1], [], 2*x ), x, 21), x, k), k = 0..20);
A303943
Expansion of 1/(1 - x/(1 - 1^2*x/(1 - 2^2*x/(1 - 3^2*x/(1 - 4^2*x/(1 - ...)))))), a continued fraction.
Original entry on oeis.org
1, 1, 2, 8, 76, 1540, 53684, 2812148, 205054036, 19805016628, 2444724910292, 375282530128052, 70102075181928148, 15655136160745164340, 4118456236678107528404, 1260512820941791994429876, 444069171743010266366969044, 178408825363590577961830752052
Offset: 0
-
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= proc(n) option remember; `if`(n<1, 1,
add(a(n-i)*b((i-1)*2, 0), i=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 13 2018
# Alternative:
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (n - k)^2 * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..17); # Peter Luschny, Oct 02 2023
-
nmax = 17; CoefficientList[Series[1/(1 - x/(1 + ContinuedFractionK[-k^2 x, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
nmax = 17; CoefficientList[Series[1/(1 - x Sum[Abs[EulerE[2 k]] x^k, {k, 0, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Abs[EulerE[2 (k - 1)]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
Original entry on oeis.org
1, 2, 48, 34560, 1393459200, 5056584744960000, 2422112183371431936000000, 211155601241022491077587763200000000, 4417964278440225627098723475313498521600000000000
Offset: 0
A302699
G.f. A(x) satisfies: A(x) = 1 + x * A(x) * (A(x) + 3*x*A'(x)) / (A(x) + x*A'(x)).
Original entry on oeis.org
1, 1, 3, 13, 71, 469, 3711, 35181, 398791, 5352149, 83650687, 1494274301, 29988083447, 666634964197, 16233361360559, 429237520044813, 12237655701598503, 374023408217062261, 12195222470567359071, 422440153967133458205, 15490152522612488256855, 599350023954941335582725, 24401304036660493806643215
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 71*x^4 + 469*x^5 + 3711*x^6 + 35181*x^7 + 398791*x^8 + 5352149*x^9 + 83650687*x^10 + ...
RELATED SERIES.
A'(x)/A(x) = 1 + 5*x + 31*x^2 + 225*x^3 + 1891*x^4 + 18473*x^5 + 210939*x^6 + 2815137*x^7 + 43551715*x^8 + 770297385*x^9 + ...
A(x) + x*A'(x) = 1 + 2*x + 9*x^2 + 52*x^3 + 355*x^4 + 2814*x^5 + 25977*x^6 + 281448*x^7 + 3589119*x^8 + 53521490*x^9 + ...
-
/* Differential equation: */
{a(n) = my(A=1); for(i=0, n, A = 1 + x*A*(A + 3*x*A')/(x*A +x^2*O(x^n))'); polcoeff(G=A, n)}
for(n=0, 30, print1(a(n), ", "))
-
/* Continued fraction: */
{a(n) = my(A=1, CF = 1+x +x*O(x^n)); for(i=1, n, for(k=0, n, CF = 1/(1 - (n-k+1)*x*A*CF ) ); A=1/(1 - x*A*CF) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A305535
Expansion of 1/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 4*x/(1 - 4*x/(1 - 6*x/(1 - 6*x/(1 - ...)))))))), a continued fraction.
Original entry on oeis.org
1, 1, 3, 13, 75, 557, 5179, 58589, 784715, 12154061, 213593563, 4195613373, 91031201643, 2160916171181, 55687501548539, 1547866851663261, 46150908197995403, 1469089501918434957, 49722765216242122267, 1782934051704982201469, 67514992620138056010667
Offset: 0
-
nmax = 20; CoefficientList[Series[1/(1 - x/(1 + ContinuedFractionK[-2 Floor[(k + 1)/2] x, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
nmax = 20; CoefficientList[Series[1/(1 - Sum[2^(k - 1) (k - 1)! x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[2^(k - 1) (k - 1)! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
Comments