cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A113376 Column 1 of triangle A113374, also equals column 0 of A113381^4.

Original entry on oeis.org

1, 8, 84, 1296, 27850, 784146, 27630378, 1177691946, 59169833470, 3434258845248, 226594550768662, 16775755397765720, 1378646430074005827, 124636321499378130839, 12300850874338422058685
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113374, A113375 (column 0), A113377 (column 2).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+2,2]

Formula

A113374 equals the matrix square of A113370, which has the property: column k of A113370^2 = column 0 of A113381^(3*k+1) for k>=0.

A113377 Column 2 of triangle A113374, also equals column 0 of A113381^7.

Original entry on oeis.org

1, 14, 252, 5957, 179270, 6641502, 294524076, 15285260326, 911664081027, 61573228385424, 4652227417900405, 389256081747220268, 35759870451009454561, 3580704593280285017869, 388344720309998846243731
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113374, A113375 (column 0), A113376 (column 1).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+3,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+3,3]

Formula

A113374 equals the matrix square of A113370, which has the property: column k of A113370^2 = column 0 of A113381^(3*k+1) for k>=0.

A113382 Column 1 of triangle A113381, also equals column 0 of A113370^5.

Original entry on oeis.org

1, 5, 45, 635, 12815, 343815, 11651427, 480718723, 23489845779, 1330745268401, 85944092769721, 6242138253088466, 504185328302302736, 44867722807185829082, 4364538423763543903228, 460969199012824227856506
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113381, A113375 (column 0), A113383 (column 2), A113370.

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^5)[n+1,1]

Formula

Column k of A113381 = column 0 of A113370^(3*k+2) for k>=0.

A113383 Column 2 of triangle A113381, also equals column 0 of A113370^8.

Original entry on oeis.org

1, 8, 120, 2556, 71548, 2508528, 106427700, 5323786728, 307710142888, 20222341451124, 1491479257952300, 122128352186849366, 11002901720698439826, 1082337197005046142588, 115485905212456384697750
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113381, A113375 (column 0), A113382 (column 1), A113370.

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^8)[n+1,1]

Formula

Column k of A113381 = column 0 of A113370^(3*k+2) for k>=0.

A113386 Column 1 of triangle A113384, also equals column 0 of A113381^5.

Original entry on oeis.org

1, 10, 130, 2365, 57695, 1798275, 68931064, 3155772612, 168671241316, 10336797449013, 715846906453760, 55355481111622706, 4732541017570608210, 443593124488673026361, 45261577596891190335258
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113381, A113384, A113385 (column 0).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(3*c-1))[r-c+1,1]))^2)[n+2,2]

Formula

A113384 equals the matrix square of A113381, which has the property: column k of A113381^2 = column 0 of A113381^(3*k+2) for k>=0.

A113393 Column 1 of triangle A113392, also equals column 0 of A113381^6.

Original entry on oeis.org

1, 6, 48, 605, 11196, 280440, 8981460, 353283128, 16567072675, 905357065354, 56632746126107, 3997082539456084, 314584709388906568, 27340439653453247728, 2602372304420672868499, 269388182085308601450047
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Crossrefs

Cf. A113392, A113389, A113381, A113388 (column 0).

Programs

  • PARI
    a(n)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(3*c))[r-c+1,1]))^2)[n+1,1]

Formula

A113392 equals the matrix square of A113389, which has the property: Column k of A113389^2 = column 0 of A113381^(3*k+3) for k>=0.

A113370 Triangle P, read by rows, such that P^3 transforms column k of P into column k+1 of P, so that column k of P equals column 0 of P^(3*k+1), where P^3 denotes the matrix cube of P.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 28, 7, 1, 1, 326, 91, 10, 1, 1, 5702, 1722, 190, 13, 1, 1, 136724, 43764, 4945, 325, 16, 1, 1, 4226334, 1415799, 163705, 10751, 496, 19, 1, 1, 161385532, 56096733, 6617605, 437723, 19896, 703, 22, 1, 1, 7378504140, 2644883675
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Comments

Triangle A114150 illustrates the identity: R^2*Q^-1 = Q^3*P^-2.
See also A114152 for the matrix product: R^3*P^-1.

Examples

			Triangle P begins:
1;
1,1;
1,4,1;
1,28,7,1;
1,326,91,10,1;
1,5702,1722,190,13,1;
1,136724,43764,4945,325,16,1;
1,4226334,1415799,163705,10751,496,19,1;
1,161385532,56096733,6617605,437723,19896,703,22,1;
1,7378504140,2644883675,317416204,21179483,960696,33136,946,25,1;
Matrix cube P^3 (A113378) starts:
1;
3,1;
15,12,1;
136,168,21,1;
1998,3190,483,30,1;
41973,80136,13615,960,39,1; ...
where P^3 transforms column k of P into column k+1 of P:
at k=0, [P^3]*[1,1,1,1,1,...] = [1,4,28,326,5702,...];
at k=1, [P^3]*[1,4,28,326,5702,...] = [1,7,91,1722,43764,...].
		

Crossrefs

Cf. A113371 (column 1), A113372 (column 2), A113373 (column 3).
Cf. A113374 (P^2), A113378 (P^3), A113381 (Q), A113384 (Q^2), A113387 (Q^3), A113389 (R), A113392 (R^2), A113394 (R^3), A114156 (P^-1).
Cf. A114150 (R^2*Q^-1=Q^3*P^-2), A114152 (R^3*P^-1).
Cf. variants: A113340, A113350.

Programs

  • PARI
    P(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);A[n+1,k+1]

Formula

Let [P^m]_k denote column k of matrix power P^m,
so that triangular matrix P may be defined by
[P]_k = [P^(3*k+1)]_0, k>=0.
Define the triangular matrix Q = A113381 by
[Q]_k = [P^(3*k+2)]_0, k>=0.
Define the triangular matrix R = A113389 by
[R]_k = [P^(3*k+3)]_0, k>=0.
Then P, Q and R are related by:
Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P,
P^2 = Q*(R^-2)*Q^3, R^2 = Q^3*(P^-2)*Q.
Amazingly, columns in powers of P, Q, R, obey:
[P^(3*j+1)]_k = [P^(3*k+1)]_j,
[Q^(3*j+1)]_k = [P^(3*k+2)]_j,
[R^(3*j+1)]_k = [P^(3*k+3)]_j,
[Q^(3*j+2)]_k = [Q^(3*k+2)]_j,
[R^(3*j+2)]_k = [Q^(3*k+3)]_j,
[R^(3*j+3)]_k = [R^(3*k+3)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^3 * [P]k = [P]{k+1},
P^3 * [Q]k = [Q]{k+1},
P^3 * [R]k = [R]{k+1},
Q^3 * [P^2]k = [P^2]{k+1},
Q^3 * [Q^2]k = [Q^2]{k+1},
Q^3 * [R^2]k = [R^2]{k+1},
R^3 * [P^3]k = [P^3]{k+1},
R^3 * [Q^3]k = [Q^3]{k+1},
R^3 * [R^3]k = [R^3]{k+1},
for all k>=0.

A113389 Triangle R, read by rows, such that R^3 transforms column k of R^3 into column k+1 of R^3, so that column k of R^3 equals column 0 of R^(3*k+3), where R^3 denotes the matrix cube of R.

Original entry on oeis.org

1, 3, 1, 15, 6, 1, 136, 66, 9, 1, 1998, 1091, 153, 12, 1, 41973, 24891, 3621, 276, 15, 1, 1166263, 737061, 110637, 8482, 435, 18, 1, 40747561, 27110418, 4176549, 323874, 16430, 630, 21, 1, 1726907675, 1199197442, 188802141, 14813844, 751920, 28221
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Comments

Related matrix products: identity R^-2*Q^3 = Q^-1*P^2 (A114151) and R^-1*P^3 (A114153).

Examples

			Triangle R begins:
1;
3,1;
15,6,1;
136,66,9,1;
1998,1091,153,12,1;
41973,24891,3621,276,15,1;
1166263,737061,110637,8482,435,18,1;
40747561,27110418,4176549,323874,16430,630,21,1;
1726907675,1199197442,188802141,14813844,751920,28221,861,24,1;
Matrix cube R^3 (A113394) starts:
1;
9,1;
99,18,1;
1569,360,27,1;
34344,9051,783,36,1;
980487,284148,26820,1368,45,1; ...
where R^3 transforms column k of R^3 into column k+1:
at k=0, [R^3]*[1,9,99,1569,...] = [1,18,360,9051,...];
at k=1, [R^3]*[1,18,360,9051,..] = [1,27,783,26820,..].
		

Crossrefs

Cf. A113379 (column 0), A113390 (column 1), A113391 (column 2).
Cf. A113370 (P), A113374 (P^2), A113378 (P^3), A113381 (Q), A113384 (Q^2), A113387 (Q^3), A113392 (R^2), A113394 (R^3).
Cf. A114151 (R^-2*Q^3 = Q^-1*P^2), A114153 (R^-1*P^3).
Cf. variants: A113340, A113350.

Programs

  • PARI
    R(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^(3*k+3))[n-k+1,1]

Formula

Let [R^m]_k denote column k of matrix power R^m,
so that triangular matrix R may be defined by
[R]_k = [P^(3*k+3)]_0, k>=0,
where the triangular matrix P = A113370 satisfies:
[P]_k = [P^(3*k+1)]_0, k>=0.
Define the triangular matrix Q = A113381 by
[Q]_k = [P^(3*k+2)]_0, k>=0.
Then P, Q and R are related by:
Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P,
P^2 = Q*(R^-2)*Q^3, R^2 = Q^3*(P^-2)*Q.
Amazingly, columns in powers of P, Q, R, obey:
[P^(3*j+1)]_k = [P^(3*k+1)]_j,
[Q^(3*j+1)]_k = [P^(3*k+2)]_j,
[R^(3*j+1)]_k = [P^(3*k+3)]_j,
[Q^(3*j+2)]_k = [Q^(3*k+2)]_j,
[R^(3*j+2)]_k = [Q^(3*k+3)]_j,
[R^(3*j+3)]_k = [R^(3*k+3)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^3 * [P]k = [P]{k+1},
P^3 * [Q]k = [Q]{k+1},
P^3 * [R]k = [R]{k+1},
Q^3 * [P^2]k = [P^2]{k+1},
Q^3 * [Q^2]k = [Q^2]{k+1},
Q^3 * [R^2]k = [R^2]{k+1},
R^3 * [P^3]k = [P^3]{k+1},
R^3 * [Q^3]k = [Q^3]{k+1},
R^3 * [R^3]k = [R^3]{k+1},
for all k>=0.

A114156 Triangle, read by rows, equal to the matrix inverse of P=A113370.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, 6, 0, -7, 1, -8, 38, -21, -10, 1, -501, 692, -119, -60, -13, 1, -13623, 14910, -420, -735, -117, -16, 1, -409953, 401802, 22911, -12470, -2080, -192, -19, 1, -14544683, 13278520, 1577527, -255570, -51064, -4424, -285, -22, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Examples

			Triangle P^-1 begins:
1;
-1,1;
3,-4,1;
6,0,-7,1;
-8,38,-21,-10,1;
-501,692,-119,-60,-13,1;
-13623,14910,-420,-735,-117,-16,1;
-409953,401802,22911,-12470,-2080,-192,-19,1; ...
Triangle P^-2 begins:
1;
-2,1;
10,-8,1;
-9,28,-14,1;
-177,160,28,-20,1;
-2307,1366,455,10,-26,1;
-38874,15982,8666,660,-26,-32,1; ...
		

Crossrefs

Cf. A114157 (column 0), A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); (P^-1)[n+1,k+1]

A114152 Triangle, read by rows, given by the product R^3*P^-1 using triangular matrices P=A113370, R=A113389.

Original entry on oeis.org

1, 8, 1, 84, 14, 1, 1296, 252, 20, 1, 27850, 5957, 510, 26, 1, 784146, 179270, 16180, 858, 32, 1, 27630378, 6641502, 623115, 34125, 1296, 38, 1, 1177691946, 294524076, 28470525, 1599091, 61952, 1824, 44, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Comments

Complementary to A114153, which gives R^-1*P^3.

Examples

			Triangular matrix R^3*P^-1 begins:
1;
8,1;
84,14,1;
1296,252,20,1;
27850,5957,510,26,1;
784146,179270,16180,858,32,1;
27630378,6641502,623115,34125,1296,38,1; ...
Compare to P^2 (A113374):
1;
2,1;
6,8,1;
37,84,14,1;
429,1296,252,20,1;
7629,27850,5957,510,26,1; ...
Thus R^3*P^-1 equals P^2 shift left one column.
		

Crossrefs

Cf. A113374 (P^2), A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^3*P^-1)[n+1,k+1]
Previous Showing 11-20 of 24 results. Next