cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A045472 Primes congruent to {1, 6} mod 7.

Original entry on oeis.org

13, 29, 41, 43, 71, 83, 97, 113, 127, 139, 167, 181, 197, 211, 223, 239, 251, 281, 293, 307, 337, 349, 379, 419, 421, 433, 449, 461, 463, 491, 503, 547, 587, 601, 617, 631, 643, 659, 673, 701, 727, 743, 757, 769
Offset: 1

Views

Author

Keywords

Comments

Primes p such that p^4 = 1 mod 210. - Gary Detlefs, Dec 29 2011
Primes in A047336, also in A113801. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Cf. A042989 (complement), A010051.

Programs

  • Haskell
    a045472 n = a045472_list !! (n-1)
    a045472_list = [x | x <- a047336_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [ p: p in PrimesUpTo(1000) | p mod 7 in {1,6} ]; // Vincenzo Librandi, Aug 13 2012
    
  • Mathematica
    Select[Prime[Range[200]],MemberQ[{1,6},Mod[#,7]]&] (* Vincenzo Librandi, Aug 13 2012 *)
  • PARI
    select(p->abs(centerlift(Mod(p,7)))==1, primes(100)) \\ Charles R Greathouse IV, Mar 17 2022

Formula

a(n) ~ 3n log n. - Charles R Greathouse IV, Mar 17 2022

A219390 Numbers k such that 14*k+1 is a square.

Original entry on oeis.org

0, 12, 16, 52, 60, 120, 132, 216, 232, 340, 360, 492, 516, 672, 700, 880, 912, 1116, 1152, 1380, 1420, 1672, 1716, 1992, 2040, 2340, 2392, 2716, 2772, 3120, 3180, 3552, 3616, 4012, 4080, 4500, 4572, 5016, 5092, 5560, 5640, 6132, 6216, 6732, 6820
Offset: 1

Views

Author

Bruno Berselli, Nov 19 2012

Keywords

Comments

Equivalently, numbers of the form m*(14*m+2), where m = 0,-1,1,-2,2,-3,3,...
Also, integer values of 2*h*(h+1)/7.

Crossrefs

Cf. similar sequences listed in A219257.
Cf. A113801 (square roots of 14*a(n)+1).

Programs

  • Magma
    [n: n in [0..7000] | IsSquare(14*n+1)];
    
  • Magma
    I:=[0,12,16,52,60]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A219390:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(14*n+1), integer) then print(n);
    fi; od; end:
    A219390(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    Select[Range[0, 7000], IntegerQ[Sqrt[14 # + 1]] &]
    CoefficientList[Series[4 x (3 + x + 3 x^2) ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,12,16,52,60},50] (* Harvey P. Dale, Feb 05 2019 *)

Formula

G.f.: 4*x^2*(3+x+3*x^2)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (14*n*(n-1)+5*(-1)^n*(2*n-1)+1)/4 +1.
a(n) = 2*A219191(n).
Sum_{n>=2} 1/a(n) = 7/2 - cot(Pi/7)*Pi/2. - Amiram Eldar, Mar 15 2022

A147832 Numbers congruent (0,2) mod 14.

Original entry on oeis.org

0, 2, 14, 16, 28, 30, 42, 44, 56, 58, 70, 72, 84, 86, 98, 100, 112, 114, 126, 128, 140, 142, 154, 156, 168, 170, 182, 184, 196, 198, 210, 212, 224, 226, 238, 240, 252, 254, 266, 268, 280, 282, 294, 296, 308, 310, 322, 324, 336, 338, 350, 352, 364, 366, 378, 380
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 14 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{#,#+2}&/@(14 Range[0,30])]  (* Harvey P. Dale, Dec 25 2010 *)

Formula

Except for the initial term, a(n) = A113801(n-1) + 1.
a(n) = 14*n - a(n-1) - 26 (with a(1)=0). - Vincenzo Librandi, Dec 17 2010
From Bruno Berselli, Dec 17 2010: (Start)
G.f.: 2*x^2*(1+6*x)/((1+x)*(1-x)^2).
a(n) = 2*A047274(n) = (14*n - 5*(-1)^n - 19)/2.
a(n) = 2*(A001106(n-1) - Sum_{i=1..n-1} a(i)) for n > 1. (End)

Extensions

382 replaced with 380 by R. J. Mathar, Jun 28 2010
Previous Showing 21-23 of 23 results.