cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A221946 a(n) = floor(sqrt(2*7^n)).

Original entry on oeis.org

1, 3, 9, 26, 69, 183, 485, 1283, 3395, 8983, 23768, 62886, 166380, 440202, 1164665, 3081415, 8152659, 21569910, 57068618, 150989371, 399480328, 1056925602, 2796362297, 7398479214, 19574536080, 51789354498, 137021752562, 362525481486, 959152267937, 2537678370405, 6714065875561, 17763748592841
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Crossrefs

Programs

A213912 a(1) = 1; for n>1, a(n) = floor(sqrt(a(n-1))) if that number is not already in the sequence, otherwise a(n) = 3*a(n-1).

Original entry on oeis.org

1, 3, 9, 27, 5, 2, 6, 18, 4, 12, 36, 108, 10, 30, 90, 270, 16, 48, 144, 432, 20, 60, 7, 21, 63, 189, 13, 39, 117, 351, 1053, 32, 96, 288, 864, 29, 87, 261, 783, 2349, 7047, 83, 249, 15, 45, 135, 11, 33, 99, 297, 17, 51, 153, 459, 1377, 37, 111, 333, 999, 31
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2013

Keywords

Comments

Permutation of natural numbers with inverse A213913.

Crossrefs

Cf. A114183.

Programs

  • Haskell
    a213912 n = a213912_list !! (n-1)
    a213912_list = 1 : f [1] where
       f xs@(x:_) = y : f (y : xs) where
         y = if z `notElem` xs then z else 3 * x where z = a000196 x
    
  • PARI
    lista(nn) = {my(k, v=vector(nn)); v[1]=1; for(n=2, nn, if(vecsearch(vecsort(v), k=sqrtint(v[n-1])), v[n]=3*v[n-1], v[n]=k)); v; } \\ Jinyuan Wang, Jun 26 2020

A217727 a(1)=2. For n >= 1, let k = floor(log a(n)). If k >= 2 and k is not already in the sequence then a(n+1)=k, otherwise a(n+1)=a(n)^2.

Original entry on oeis.org

2, 4, 16, 256, 5, 25, 3, 9, 81, 6561, 8, 64, 4096, 16777216, 281474976710656, 33, 1089, 6, 36, 1296, 7, 49, 2401, 5764801, 15, 225, 50625, 10, 100, 10000, 100000000, 18, 324, 104976, 11, 121, 14641, 214358881, 19, 361, 130321, 16983563041, 23, 529, 279841, 12, 144, 20736, 429981696, 184884258895036416, 39
Offset: 1

Views

Author

N. J. A. Sloane, Mar 21 2013

Keywords

Comments

Does every number >= 2 appear?
Suggested by a posting to the Math Fun Mailing List by Keith F. Lynch, Mar 21 2013.
See A277848 for the index of a given number, i.e., the left inverse of this function. - M. F. Hasler, Nov 20 2016

Crossrefs

Cf. A114183.

Programs

  • Maple
    Digits:=100;
    a1:=[2,4,16];
    s1:=convert(a1,set);
    for n from 3 to 50 do
    t1:=a1[n];
    k:=floor(log(t1));
    if k >= 2 then
       if evalb(k in s1) then a1:=[op(a1),t1^2]; s1:= s1 union {t1^2}
       else a1:=[op(a1),k]; s1 := s1 union {k}; fi;
    else
       a1:=[op(a1),t1^2]; s1:= s1 union {t1^2};
    fi;
    od:
    [seq(a1[i],i=1..nops(a1))];
  • Mathematica
    a = {2}; Do[If[And[# >= 2, ! MemberQ[a, #]], AppendTo[a, #], AppendTo[a, a[[n]]^2]] &@ Floor@ Log@ a[[n]], {n, 50}]; a (* Michael De Vlieger, Nov 22 2016 *)
  • PARI
    A217727(n,show_all=0,a=2,u=[])={for(i=2,n, show_all&&print1(a","); u=setunion(u, [a]); while(#u>1&&u[2]==u[1]+1, u=u[^1]); my(t=log(a)\1); a=if(t>u[1]&&!setsearch(u, t), t, a^2));a} \\ M. F. Hasler, Nov 22 2016

A277848 Index at which n occurs in A217727, or 0 if there is no such index.

Original entry on oeis.org

1, 7, 2, 5, 18, 21, 11, 8, 28, 35, 46, 74, 54, 25, 3, 129, 32, 39, 78, 58, 133, 43, 62, 6, 95, 91, 152, 171, 87, 71, 190, 16, 148, 328, 19, 181, 167, 51, 227, 405, 618, 355, 344, 254, 440, 83, 926, 22, 67, 277, 100, 157, 1400, 195, 333, 186, 1144, 232, 259, 445, 282, 105, 12, 237, 110, 115, 388, 211, 468, 383, 492, 144, 594, 307, 366, 206, 126, 533, 324, 9, 463, 642
Offset: 2

Views

Author

M. F. Hasler, Nov 20 2016

Keywords

Comments

It is conjectured that all integers >= 2 appear in A217727.

Crossrefs

Programs

  • PARI
    A277848(n,a=2,u=[])={for(i=1,9e9,a==n&&return(i);u=setunion(u,[a]); while(#u>1&&u[2]==u[1]+1, u=u[^1]); my(t=log(a)\1); a=if(t>u[1]&&!setsearch(u, t), t, a^2))} \\ This code computes ("for each n") the sequence A217727 up to the index where n occurs.
    
  • PARI
    A277848_vec(N,a=2,u=[],v=vector(N))={my(i=1,t); until(u[1]>N,a<=N&&v[a]=i; u=setunion(u,[a]); while(#u>1&&u[2]==u[1]+1, u=u[^1]);i++; a=if((t=log(a)\1)>u[1]&&!setsearch(u, t), t, a^2));v[^1]} \\ This is more efficient to compute a whole range a(1..N).

A213218 Even numbers in A221715.

Original entry on oeis.org

20, 192, 352, 104, 736, 264, 64, 464, 1088, 640, 1344, 800, 3136, 896, 1952, 2496, 22272, 2752, 1728, 1504, 8576, 4480, 3520, 12672, 7552, 4160, 3840, 11520, 2304, 19712, 9088, 8000, 10880, 14592, 11904, 4864, 21248, 8448, 17664, 26624, 10112, 6528, 5696, 6208, 24704, 22912, 28480, 9536, 39168, 41216, 36736
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2013

Keywords

Crossrefs

A221944 Floor(sqrt(2*3^n)).

Original entry on oeis.org

1, 2, 4, 7, 12, 22, 38, 66, 114, 198, 343, 595, 1030, 1785, 3092, 5357, 9278, 16071, 27835, 48213, 83507, 144639, 250523, 433919, 751571, 1301759, 2254713, 3905277, 6764139, 11715833, 20292418, 35147500, 60877256, 105442501, 182631769, 316327504, 547895309, 948982513, 1643685929, 2846947541, 4931057788
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Crossrefs

Programs

A221945 a(n) = floor(sqrt(2*5^n)).

Original entry on oeis.org

1, 3, 7, 15, 35, 79, 176, 395, 883, 1976, 4419, 9882, 22097, 49410, 110485, 247052, 552427, 1235264, 2762135, 6176323, 13810679, 30881617, 69053396, 154408088, 345266983, 772040444, 1726334915, 3860202221, 8631674575, 19301011109, 43158372875, 96505055547, 215791864375, 482525277735
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Comments

Floor of norm of (1 + i) * (1 + 2i)^n. - Jon Perry, Dec 06 2013

Crossrefs

Programs

A268962 a(1) = 1 and a(2) = 2; thereafter a(n+1) = floor[sqrt(a(n))] if not already in the sequence; otherwise a(n+1) = a(n) + a(n-1).

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 21, 4, 25, 29, 54, 7, 61, 68, 129, 11, 140, 151, 12, 163, 175, 338, 18, 356, 374, 19, 393, 412, 20, 432, 452, 884, 1336, 36, 6, 42, 48, 90, 9, 99, 108, 10, 118, 128, 246, 15, 261, 16, 277, 293, 17, 310, 327, 637, 964, 31, 995, 1026, 32
Offset: 1

Views

Author

Melvin Peralta, Feb 16 2016

Keywords

Comments

Hans Havermann found that the sequence is not a permutation of the integers since a(708)=a(1276)=1666.

Crossrefs

Programs

A335836 a(1) = 1; for n>1, a(n) = floor(a(n-1)^(1/3)) if that number is not already in the sequence, otherwise a(n) = 2*a(n-1).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 96, 192, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 13, 26, 52, 104, 208, 416, 7, 14, 28, 56, 112, 224, 448, 896, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 9216, 18432, 36864, 33, 66, 132, 264, 528, 1056, 2112
Offset: 1

Views

Author

Jinyuan Wang, Jun 27 2020

Keywords

Comments

If k is not in this sequence, then none of k^(3^t), k^(3^t)+1, ..., (k+1)^(3^t)-1 belong to the sequence. Because (k+1)^(3^k) > 2*k^(3^k), any m > k^(3^k) is not in the sequence, which is a contradiction to {a(n)} is not bounded above. Therefore, this sequence is a permutation of the natural numbers.

Crossrefs

Programs

  • Mathematica
    Nest[Append[#1, If[FreeQ[#1, #2], #2, 2 #1[[-1]] ]] & @@ {#, Floor[#[[-1]]^(1/3)]} &, {1}, 56] (* Michael De Vlieger, Jun 28 2020 *)
  • PARI
    lista(nn) = {my(k, v=vector(nn)); v[1]=1; for(n=2, nn, if(vecsearch(vecsort(v), k=sqrtnint(v[n-1], 3)), v[n]=2*v[n-1], v[n]=k)); v; }

A221943 Floor(sqrt(7*2^n)).

Original entry on oeis.org

2, 3, 5, 7, 10, 14, 21, 29, 42, 59, 84, 119, 169, 239, 338, 478, 677, 957, 1354, 1915, 2709, 3831, 5418, 7662, 10836, 15325, 21673, 30651, 43347, 61303, 86695, 122606, 173391, 245213, 346783, 490426, 693567, 980853, 1387135, 1961706, 2774271, 3923412, 5548542, 7846824, 11097085, 15693648, 22194170, 31387297
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2013

Keywords

Comments

Theorem 3 of Dubickas implies that infinitely many terms of this sequence are divisible by 2 or 3 (and hence infinitely many composites). - Charles R Greathouse IV, Feb 04 2016

References

  • Artūras Dubickas, Prime and composite integers close to powers of a number, Monatsh. Math. 158:3 (2009), pp. 271-284.

Crossrefs

Programs

  • Mathematica
    Floor[Sqrt[7*2^Range[0,50]]] (* Harvey P. Dale, Apr 11 2018 *)
  • PARI
    a(n)=sqrtint(7<Charles R Greathouse IV, Apr 18 2013
Previous Showing 11-20 of 20 results.